

Review

The Clinical Potential of MicroRNAs as Diagnostic and Prognostic Biomarkers

Santanu Manna

Assistant Professor, Rai University -SH 144, Village – Saroda, Taluka – Dholka, Dist. – Ahmedabad – 382260, Gujarat (India)

Corresponding Author:

Dr Santanu Manna

Email:

santanumanna@outlook.in

DOI: 10.62896/cplr.2.4.05

Conflict of interest: NIL

Article History

Received: 12/10/2025

Accepted: 28/11/2025

Published: 10/12/2025

Abstract:

MicroRNAs (miRNAs) are small, non-coding RNA molecules that play a pivotal role in regulating gene expression, influencing various biological processes, including cell differentiation, proliferation, and apoptosis. Recent advancements in molecular biology have highlighted the potential of miRNAs as promising biomarkers for the diagnosis, prognosis, and therapeutic response in various diseases, particularly cancer. This paper explores the clinical significance of miRNAs, focusing on their role as diagnostic and prognostic biomarkers in different pathological conditions. It discusses the mechanisms through which miRNAs contribute to disease pathogenesis, their detection methods, and the challenges involved in translating miRNA-based diagnostics into clinical practice. Furthermore, the review examines the prospects of miRNAs as biomarkers for early disease detection, prediction of disease progression, and evaluation of treatment efficacy. By synthesizing current literature, this paper aims to provide a comprehensive understanding of the clinical utility of miRNAs in personalized medicine and their future implications in improving patient outcomes.

Keywords: MicroRNAs, diagnostic biomarkers, prognostic biomarkers, gene expression regulation, personalized medicine, disease pathogenesis, molecular diagnostics, early detection, cancer biomarkers, therapeutic response.

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (<http://creativecommons.org/licenses/by/4.0>) and the Budapest Open Access Initiative (<http://www.budapestopenaccessinitiative.org/read>), which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.

1.1 Introduction:

MicroRNAs (miRNAs) are a class of small, non-coding RNAs, approximately 20-24 nucleotides in length, that regulate gene expression at the post-transcriptional level. Since their discovery in the early 1990s, miRNAs have been recognized for their critical role in regulating various biological processes, including cell proliferation, differentiation, apoptosis, and metabolism. The regulation of gene expression by miRNAs occurs through the binding to messenger RNAs (mRNAs), leading to their degradation or inhibition of translation. Given their influence on cellular processes, miRNAs have been implicated in the pathogenesis of a wide range of diseases, including

cancers, cardiovascular disorders, neurological diseases, and metabolic syndromes.(1)

Recent research has underscored the potential of miRNAs as diagnostic and prognostic biomarkers, particularly in the context of cancer. Unlike traditional biomarkers, miRNAs can be detected in various biological fluids such as blood, serum, plasma, and urine, providing a minimally invasive and easily accessible means for disease diagnosis. Their ability to reflect the molecular alterations occurring within cells makes them powerful tools for early detection, risk stratification, and monitoring therapeutic responses.

In addition to their diagnostic potential, miRNAs have emerged as prognostic markers, aiding in the prediction of disease progression and patient

outcomes. The expression profiles of specific miRNAs can indicate the aggressiveness of a disease, its likelihood of recurrence, or a patient's response to treatment. Despite these promising prospects, challenges remain in the standardization of miRNA detection methods, the understanding of their tissue-specific expression patterns, and the development of miRNA-based therapeutic interventions.(2)

This paper aims to explore the clinical potential of miRNAs as diagnostic and prognostic biomarkers. It will examine the molecular mechanisms by which miRNAs influence disease progression, discuss current strategies for miRNA detection, and assess the challenges and future directions for integrating miRNA-based diagnostics into clinical practice. By evaluating the latest research and advancements in the field, this paper seeks to highlight the transformative role of miRNAs in modern medicine and their potential to revolutionize personalized healthcare.

1.2 Overview of MicroRNAs (miRNAs)

MicroRNAs (miRNAs) are small, non-coding RNA molecules, typically consisting of 20-24 nucleotides. They play a crucial role in regulating gene expression by binding to complementary sequences in messenger RNA (mRNA) molecules, leading to mRNA degradation or inhibition of translation.(3) Since their discovery, miRNAs have been found to be involved in a wide range of biological processes, such as cell differentiation, proliferation, apoptosis, and metabolism. Their small size and ability to regulate multiple target genes make miRNAs powerful regulators of cellular functions, with implications for both normal physiological processes and disease pathogenesis.(4)

1.3 Discovery and Biological Function of miRNAs

The discovery of miRNAs dates back to 1993, when the first miRNA, lin-4, was identified in *Caenorhabditis elegans*. Unlike traditional genes that code for proteins, lin-4 was found to regulate the expression of another gene, lin-14, through binding to its mRNA.(5) This discovery challenged the conventional understanding of genetic regulation and opened the door for the recognition of a large class of non-coding RNAs with regulatory functions. Since then, thousands of miRNAs have been discovered across various species, including humans, where they are now recognized as essential regulators of gene expression. miRNAs are involved in processes such as development, immune

responses, and cellular homeostasis, and their dysregulation is often linked to diseases like cancer, cardiovascular diseases, and neurological disorders.(6)

1.4 Role of miRNAs in Gene Expression Regulation

miRNAs primarily regulate gene expression at the post-transcriptional level. They achieve this by binding to specific target mRNAs through complementary base pairing. This binding can result in the degradation of the target mRNA or the inhibition of its translation into protein. (7) The interaction between miRNAs and their target mRNAs is highly specific, with each miRNA potentially regulating hundreds of mRNAs. This regulation can either enhance or suppress gene expression, contributing to the fine-tuning of cellular processes. miRNAs are critical for maintaining cellular balance, and their dysregulation can lead to altered gene expression patterns that contribute to the development and progression of various diseases. For instance, some miRNAs can act as tumor suppressors, while others may function as oncogenes, depending on the context of their expression.(8)

1.5 Biogenesis of miRNAs

The biogenesis of miRNAs involves several steps, beginning with the transcription of primary miRNA (pri-miRNA) molecules by RNA polymerase II. These pri-miRNAs are typically several hundred nucleotides long and contain a stem-loop structure. The pri-miRNAs are then processed in the nucleus by the enzyme Drosha, which cleaves the pri-miRNA to release a shorter precursor miRNA (pre-miRNA).(9) This pre-miRNA, still in a hairpin structure, is exported from the nucleus into the cytoplasm by the protein Exportin-5. In the cytoplasm, the pre-miRNA is further processed by the enzyme Dicer, which cleaves it into a double-stranded miRNA duplex. One strand of the duplex, known as the mature miRNA, is incorporated into the RNA-induced silencing complex (RISC), while the other strand is usually degraded. The mature miRNA within the RISC complex is then ready to bind to its target mRNAs and regulate gene expression. The intricate regulation of miRNA biogenesis is essential for the proper function of miRNAs and their role in maintaining cellular homeostasis.(10)

1.6 Impact of miRNAs on Cellular Processes

miRNAs play a fundamental role in regulating a wide array of cellular processes, such as cell proliferation, differentiation, apoptosis, and stress response. Their ability to fine-tune gene expression allows them to maintain cellular homeostasis and ensure proper cellular function. (11) By controlling the levels of target mRNAs, miRNAs can either promote or inhibit specific pathways, depending on the cellular context. For instance, certain miRNAs regulate the cell cycle by controlling the expression of genes involved in cell division, while others can induce programmed cell death (apoptosis) by targeting genes that inhibit apoptosis. In stem cells, miRNAs are essential for maintaining pluripotency and guiding differentiation into specific lineages. Additionally, miRNAs can help cells respond to environmental stresses, such as hypoxia or oxidative stress, by modulating the expression of protective proteins. Dysregulation of miRNAs can lead to aberrant cellular behavior, contributing to the development of various diseases, including cancer, cardiovascular diseases, and neurodegenerative disorders.(12)

1.7 miRNAs in Disease Pathogenesis

miRNAs are increasingly recognized as key players in the pathogenesis of a wide range of diseases. In cancer, for example, miRNAs can function as tumor suppressors or oncogenes, depending on their targets and expression levels. Tumor-suppressive miRNAs, when downregulated, can lead to unchecked cell proliferation, while oncogenic miRNAs, when overexpressed, may promote tumorigenesis.(13) miRNAs also influence metastasis, angiogenesis, and drug resistance by regulating genes involved in these processes. Beyond cancer, miRNAs are implicated in various other diseases, including cardiovascular disorders, where they can regulate genes involved in vascular inflammation and atherosclerosis, and neurological diseases, where miRNAs modulate neurogenesis and synaptic plasticity. The involvement of miRNAs in such diverse diseases makes them critical in understanding disease mechanisms and highlights their potential as therapeutic targets. By regulating multiple genes in a coordinated fashion, miRNAs provide a unique regulatory layer in disease pathogenesis, contributing to both disease initiation and progression.(14)

1.8 miRNAs as Diagnostic Biomarkers

miRNAs have emerged as promising diagnostic biomarkers due to their stability in biological fluids

such as blood, serum, plasma, and urine, making them ideal candidates for non-invasive testing. Because miRNAs are involved in various physiological and pathological processes, their expression profiles reflect the molecular alterations associated with specific diseases.(15) For example, alterations in the expression of certain miRNAs can be indicative of cancer, cardiovascular disease, or viral infections. miRNAs offer several advantages over traditional biomarkers, including the ability to detect disease in its early stages, predict disease progression, and monitor therapeutic responses. Additionally, miRNAs are often tissue- and disease-specific, providing more precise diagnostic information. Technologies such as quantitative PCR, microarray analysis, and next-generation sequencing have enabled the identification of specific miRNAs that correlate with disease states. Despite their potential, challenges remain in the clinical application of miRNAs as diagnostic tools, such as the need for standardized detection methods and the validation of miRNA signatures across large and diverse patient populations. Nevertheless, the growing body of research supporting miRNAs as reliable diagnostic biomarkers has opened new avenues for personalized medicine, with the promise of improving early diagnosis and patient outcomes.(16)

1.9 miRNAs in Cancer Diagnostics

miRNAs have shown great potential as diagnostic biomarkers in cancer due to their ability to reflect the molecular alterations occurring in tumors. Tumors often exhibit dysregulated miRNA expression patterns, with certain miRNAs being either overexpressed or underexpressed compared to normal tissues. These changes in miRNA levels can provide valuable insights into the presence, type, and stage of cancer. (17) For example, specific miRNAs, such as miR-21 and miR-155, have been linked to various types of cancers, including breast, lung, and colorectal cancer, and can be used to identify the disease in its early stages. Additionally, cancer cells often secrete miRNAs into the bloodstream, making them accessible for detection using non-invasive methods. The use of miRNAs in liquid biopsy has enabled the development of diagnostic assays that can detect cancer without the need for tissue biopsies, which are often invasive and challenging. As more cancer-associated miRNAs are identified, the development of comprehensive miRNA panels for cancer detection

and monitoring is becoming an increasingly promising area of clinical research.(18)

1.10 miRNAs as Prognostic Biomarkers

In addition to their diagnostic potential, miRNAs also serve as prognostic biomarkers, helping to predict disease outcomes and guide treatment decisions. The expression levels of specific miRNAs have been shown to correlate with the aggressiveness of cancer, its potential for metastasis, and the likelihood of recurrence. For example, miRNAs like miR-200 and miR-34 have been associated with cancer cell invasion and metastasis, while others like miR-21 and miR-155 are linked to poor prognosis in several cancers.(19) By assessing miRNA expression patterns, clinicians can gain insights into how aggressive a cancer may be, aiding in patient stratification and personalized treatment plans. Furthermore, miRNAs can be used to monitor patient responses to therapy, as changes in miRNA levels can indicate therapeutic efficacy or resistance. As miRNAs offer an integrated view of the molecular changes occurring in cancer cells, their ability to predict patient outcomes is becoming increasingly recognized in the clinical setting, particularly in cancers where traditional prognostic indicators are less effective.(20)

1.11 miRNA Detection Methods and Techniques

The accurate detection of miRNAs is essential for their clinical application as biomarkers. Several methods are available to measure miRNA expression, with the choice of technique often depending on the research or clinical objectives. One of the most widely used techniques is quantitative real-time polymerase chain reaction (qRT-PCR), which is highly sensitive and allows for the quantification of specific miRNAs.(21) Other methods include microarray analysis, which enables the profiling of large numbers of miRNAs in a single experiment, and next-generation sequencing (NGS), which provides a high-throughput approach to miRNA discovery and quantification. Additionally, techniques such as northern blotting and in situ hybridization allow for the visualization of miRNA expression in tissues, providing spatial context. More recently, digital PCR and droplet digital PCR have emerged as highly precise methods for detecting low-abundance miRNAs. While these methods are powerful, challenges remain in standardizing miRNA detection across different laboratories and clinical settings. The development of robust and cost-effective miRNA detection

platforms is key to translating miRNA biomarkers into routine clinical practice.(22)

1.12 Minimally Invasive Nature of miRNA Biomarkers

One of the most attractive features of miRNAs as biomarkers is their minimally invasive nature. miRNAs can be detected in various biofluids, such as blood, serum, plasma, urine, and saliva, which can be easily obtained through non-invasive procedures. This contrasts with traditional diagnostic methods that often require tissue biopsies, which are invasive, costly, and carry associated risks. The stability of miRNAs in these biofluids, even under harsh conditions (e.g., heat, freeze-thaw cycles), further enhances their appeal as non-invasive biomarkers.(23) Because miRNAs are released from cells into circulation, their levels can reflect the physiological or pathological state of tissues and organs. For instance, in cancer, tumor-derived miRNAs can be found in plasma or serum, offering a "liquid biopsy" approach that can detect cancer-related miRNAs without the need for a tissue sample. This non-invasive approach is particularly useful for early detection, monitoring disease progression, and assessing therapeutic responses, ultimately improving patient comfort and reducing healthcare costs. The ability to track miRNA changes over time through simple blood tests could revolutionize personalized medicine, enabling real-time monitoring of disease status and treatment efficacy.(24)

1.13 miRNAs and Early Disease Detection

miRNAs hold significant promise for early disease detection due to their ability to reflect early molecular alterations before clinical symptoms become apparent. Because miRNAs are involved in a wide variety of biological processes, their expression profiles can change in response to the onset of disease, making them highly sensitive indicators of pathological changes.(25) In cancer, for example, specific miRNAs have been shown to be dysregulated in the early stages of tumorigenesis, offering a potential means for detecting cancers long before they are visible on conventional imaging or detectable by other biomarkers. Similarly, miRNAs are also involved in the early detection of cardiovascular diseases, neurological disorders, and viral infections. The early detection of miRNAs in biological fluids such as blood, urine, or saliva offers a non-invasive method for identifying disease at its onset, potentially leading to earlier intervention and

better treatment outcomes. By identifying miRNA signatures associated with early disease stages, clinicians can intervene more effectively, improving survival rates and reducing the overall burden of disease.(26)

1.14 Challenges in miRNA-Based Diagnostics

While miRNAs offer great promise as diagnostic tools, several challenges need to be addressed before they can be widely implemented in clinical practice. One major challenge is the standardization of miRNA detection methods. Current miRNA detection techniques, such as quantitative PCR and next-generation sequencing, vary in sensitivity, specificity, and reproducibility.(27) Furthermore, there is a lack of consensus on the best reference genes for normalization and the most appropriate platforms for miRNA quantification. Another challenge is the complexity of miRNA expression, as the same miRNA can have different roles depending on tissue type, disease state, and even individual genetic differences. Additionally, miRNA expression can be influenced by external factors, such as diet, smoking, and environmental exposures, which may complicate the interpretation of miRNA profiles. Furthermore, the identification of disease-specific miRNAs requires large-scale validation in diverse patient populations, which can be resource-intensive. Despite these challenges, ongoing research and technological advancements are expected to refine miRNA-based diagnostic methods, making them more reliable and applicable in clinical settings.(28)

1.15 Clinical Applications of miRNAs in Personalized Medicine

miRNAs are rapidly emerging as a key component of personalized medicine, where treatment plans are tailored to individual patients based on their genetic makeup, disease profile, and predicted response to therapies. miRNAs can provide valuable information on the molecular characteristics of a patient's disease, enabling more precise and effective treatment decisions. In cancer, for example, the expression levels of certain miRNAs can predict the aggressiveness of the tumor, helping to guide treatment strategies such as chemotherapy, targeted therapies, or immunotherapy.(29) miRNA profiling can also be used to monitor treatment responses and detect minimal residual disease, ensuring that treatment is adjusted as needed. Beyond oncology, miRNAs have potential applications in other areas of personalized medicine, such as cardiovascular diseases, where specific miRNAs can help predict a patient's risk of heart attack or stroke. Additionally, miRNAs can assist in identifying patients who are likely to benefit from specific drug therapies, helping to avoid adverse drug reactions and improving therapeutic efficacy. As our understanding of miRNAs continues to grow, they are poised to play an integral role in the future of personalized medicine, enabling more targeted and effective treatments based on an individual's molecular profile.(30)

miRNA(s)	Role	Clinical Application
miR-21	Oncogene; Associated with tumor initiation and progression in various cancers, including breast and lung cancer.	Cancer detection (liquid biopsy), Prognosis in lung, breast, and colorectal cancer.
miR-155	Oncogene; Implicated in breast cancer, lymphoma, and colorectal cancer.	Cancer detection, Prognosis in lymphoma, colorectal, and breast cancer.
miR-34a	Tumor suppressor; Involved in regulating apoptosis and cell cycle arrest.	Prognosis in colorectal cancer, cancer therapy targeting miR-34a.
miR-200	Metastasis suppressor; Correlated with epithelial-mesenchymal transition in cancer cells.	Metastasis prediction, Therapeutic target in epithelial cancers.
miR-29b	Tumor suppressor; Regulates cell proliferation and apoptosis in lung and colon cancer.	Therapeutic targeting to prevent tumor progression in various cancers.
miR-146a	Regulator of inflammation; Implicated in autoimmune diseases and inflammatory responses.	Diagnostic and prognostic value in inflammation-related diseases and cancers.
miR-375	Metastasis suppressor; Involved in regulating metastasis in gastric and pancreatic cancer.	Early detection of metastasis, Prognostic biomarker in gastric and pancreatic cancer.

miR-16	Tumor suppressor; Associated with reduced progression in chronic lymphocytic leukemia (CLL).	Used in prognostic evaluation of leukemia, Possible therapeutic target.
miR-34c	Tumor suppressor; Plays a role in the regulation of apoptosis in various cancers.	Prognostic marker for apoptosis regulation, cancer treatment response.
miR-155	Oncogene; Correlated with poor prognosis and metastasis in multiple cancer types.	Prognostic marker in breast and lung cancers, Therapeutic target.

Conclusion

MicroRNAs (miRNAs) are emerging as highly significant molecular players in the regulation of gene expression, influencing a wide range of biological processes and cellular functions. Their unique ability to modulate gene expression at the post-transcriptional level allows them to impact cellular activities such as proliferation, differentiation, apoptosis, and response to stress. As diagnostic and prognostic biomarkers, miRNAs offer significant potential in the early detection and monitoring of various diseases, particularly cancer, cardiovascular diseases, and neurological disorders. The non-invasive nature of miRNA detection, coupled with advancements in molecular biology techniques, makes them attractive candidates for clinical diagnostics.

However, the clinical application of miRNAs as biomarkers is not without challenges. Issues related to the standardization of detection methods, the complexity of miRNA regulation, and the variability of miRNA expression across different tissue types and disease states remain hurdles to overcome. Despite these challenges, ongoing research and advancements in miRNA technologies are expected to address these limitations, paving the way for miRNAs to play a transformative role in personalized medicine. With their potential for early disease detection, prognosis prediction, and monitoring of treatment responses, miRNAs hold promise as essential tools for improving patient outcomes and revolutionizing clinical practices.

As research continues to uncover the full range of miRNA functions and their roles in disease pathogenesis, the integration of miRNAs into clinical practice is likely to expand, offering new avenues for precision diagnostics and therapeutic interventions. Ultimately, miRNAs have the potential to contribute significantly to the development of personalized healthcare, enhancing the accuracy of disease diagnosis, prognosis, and treatment.

References

1. Mandal S, Mandal S. Topical Delivery of Sulfasalazine via Nanosponges-Loaded Hydrogels: A Novel Approach for Enhanced Psoriasis Management. International Journal of Multidisciplinary Science and Innovation. 2025 Apr 25:19-23.
2. Topi D, Dubey CK, Sharma S, Fasiha B, Mandal S. A Review of Plant-Based Natural Products for the Management of Diabetes: From Ethnobotany to Clinical Evidence. International Journal of Natural Products and Alternative Medicine. 2025 Mar 20:16-22.
3. Mandal S, Kumar M, Bhumika K, Ali S, Jahan I, Mandal S. Impact of Electronic Health Records and Automation on Pharmaceutical Management Efficiency: A Narrative Review. International Journal of Health Sciences and Engineering. 2025 Feb 17:21-36.
4. Kumar M, Manda S, Bhumika K, Ali S, Jahan I, Mandal S. Targeted Drug Delivery Systems in Oncology: A Review of Recent Patents and future directions. International Journal of Health Sciences and Engineering. 2025 Feb 17:37-57.
5. Mandal S. Advances and Future Prospects of Lipid-Based Nanocarriers in Targeted Cancer Therapy: A Comprehensive Review. Current Cancer Drug Targets. 2025 May 13.
6. Chatterjee S, Ahamed IN, Aggarwal M, Mandal S, Mandal S. Bioadhesive Self-Nanoemulsifying Drug Delivery Systems (BSNEDDS): A Novel Strategy to Enhance Mucosal Drug Absorption and Bioavailability. International Journal of Multidisciplinary Science and Innovation. 2025 Apr 25:24-7.
7. Velraj M, Bhyan B, Mishram R, Padhy RP, Mandal S. Recent Advances in the Isolation and Characterization of Antimicrobial Compounds. International Journal of

Natural Products and Alternative Medicine. 2025 Mar 20:23-9.

8. Kotnala M, Porwal P, Mandal S, Mandal S. The Role of Plant Metabolites in Enhancing Immunomodulatory Responses in Autoimmune Diseases. International Journal of Natural Products and Alternative Medicine. 2025 Mar 20:30-6.
9. Monisha R, Jaqueline RS, Yadav K, Mandal S, Mandal S. Psychological Well-Being and Oral Health: The Role of Dentistry in Comprehensive Healthcare. International Journal of Integrative Dental and Medical Sciences. 2025 Mar 17:22-9.
10. Ismail A, KR PK, Mandal S. The Role of Oral Microbiota in Systemic Diseases: Bridging the gap between Dentistry and Medicine. International Journal of Integrative Dental and Medical Sciences. 2025 Mar 17:30-6.
11. Chatterjee S, Ahamed IN, Aggarwal M, Mandal S, Mandal S. Advances in Dental Biomaterials: Bridging Dentistry and Medicine for Improved Patient Outcomes. International Journal of Integrative Dental and Medical Sciences. 2025 Mar 17:1-6.
12. Kumar S, Mandal S, Bhyan B, Pandey A, Mishra R, Jain A. Digital Marketing Trends and Consumer Engagement: A Review. The International Journal of Humanities, Social Sciences and Business Management. 2025 Feb 27:6-10.
13. Mandal S, Mandal S. Cryptocurrency and the Future of Financial Markets: A Mini Review. The International Journal of Humanities, Social Sciences and Business Management. 2025 Feb 27:21-7.
14. Mandal S, Mandal S. Mesalamine Microemulsions for Crohn's Disease: A Review. International Journal of Health Sciences and Engineering. 2025 Feb 17:1-8.
15. Bhumika K, Ali S, Jahan I, Kumar M, Mandal S, Mandal S. Enhanced Bioavailability and Targeted Delivery of Mesalamine for Crohn's Disease Using Microemulsion Formulations. International Journal of Health Sciences and Engineering. 2025 Feb 17:16-20.
16. Mandal S, Mandal S. Design and Evaluation of Liposomal Carriers for Targeted Delivery of siRNA In Cancer Therapy. Current Pharmaceutical Letters And Reviews. 2024 Oct 3:53-63.
17. Bhumika K, Mandal S. Exploring the Chemical Composition and Cardioprotective Properties of Plumeria obtusa Using Advanced LC-MS/MS and Computational Methods in a Rabbit Model of AdriamycinInduced Myocardial Injury. Current Pharmaceutical Letters And Reviews. 2024 Oct 3:64-70.
18. Mandal S, Mandal S. Green Biomaterials from plants: Harnessing Nature for Sustainable Solutions. Current Pharmaceutical Letters And Reviews. 2024 Oct 3:11-24.
19. Shiva K, Mandal S. Development and Characterization of Bioinspired Cationic Lipid Nanocarriers for Enhanced Anti-Cancer Vaccine Delivery and Tumor Inhibition: In Vitro and In Vivo Evaluation. Current Pharmaceutical Letters And Reviews. 2024 Oct 3:71-7.
20. Mandal S, Mandal S. Strategic Design and Synthesis of Betulinic Acid Derivatives for Targeted Cancer Treatment. Current Pharmaceutical Letters And Reviews. 2024 Oct 3:88-94.
21. Jahan I, Mandal S. Development of Multi-Functional Nanocarriers for Combined Chemo and Photothermal Cancer Therapy. Current Pharmaceutical Letters And Reviews. 2024 Oct 3:78-87.
22. Mandal S, Singh AP. Development and In-Vitro Characterization of Gentamycin Sulphate Nanoemulgel for Ophthalmic Applications. *International Journal of Drug Delivery Technology*. 2024;14(4):2347-58. doi: 10.25258/ijddt.14.4.56
23. Suraj Mandal, *Murraya koenigii*: A Source of Bioactive Compounds for Inflammation and Pain Management, Current Bioactive Compounds; Volume 21, Issue , Year 2025, e15734072348822. DOI: 10.2174/011573407234882250324073439
24. Jiyaul Hak, Iram Jahan, Nasiruddin Ahmad Farooqui, Atul Pratap Singh, Himanchal Sharma, Smriti Gohri, Anshu Gujjar, Suraj Mandal, Nanochips in the Field of Oncology: Advancements and Potential for Enhanced Cancer Therapy, Current Cancer Therapy Reviews; Volume 21, Issue , Year 2025, e15733947343855. DOI: 10.2174/0115733947343855241230115820

25. Iram Jahan, Jiyaul Hak, Suraj Mandal, Shadab Ali, Sayad Ahad Ali, Nasiruddin Ahmad Farooqui, Isoquinoline Quaternary Alkaloid (IQA) Nano-dressings: A Comprehensive Review on Design Strategies, Therapeutic Applications, and Advancements in Transdermal Delivery for Chronic Wound Management, Recent Advances in Drug Delivery and Formulation; Volume 19, Issue , Year 2025, e26673878330005. DOI: 10.2174/012667387833000525032606010 3

26. Mandal S, Vishvakarma P. Nanoemulgel: A Smarter Topical Lipidic Emulsion-based Nanocarrier. *Indian J of Pharmaceutical Education and Research.* 2023;57(3s):s481-s498.

27. Mritunjay Kumar Ojha, Nalluri Satish Kumar, Umesh Kumar Sharma, Prakash Gadipelli, Suraj Mandal, Farah Deeba, Monalisa Khuntia, Hariballav Mahapatra (2024) Exploring the Potential of Artificial Intelligence in Optimizing Clinical Trial Design for More Efficient Drug Development. *Library Progress International.* 44(3), 9498-9510.

28. Mandal S, Jaiswal DV, Shiva K. A review on marketed Carica papaya leaf extract (CPLE) supplements for the treatment of dengue fever with thrombocytopenia and its drawback. *International Journal of Pharmaceutical Research.* 2020 Jul;12(3).

29. Mandal S, Bhumika K, Kumar M, Hak J, Vishvakarma P, Sharma UK. A Novel Approach on Micro Sponges Drug Delivery System: Method of Preparations, Application, and its Future Prospective. *Indian J of Pharmaceutical Education and Research.* 2024;58(1):45-63.

30. Mandal S, Vishvakarma P, Bhumika K. Developments in Emerging Topical Drug Delivery Systems for Ocular Disorders. *Curr Drug Res Rev.* 2023 Dec 29. doi: 10.2174/012589977526663423121304470 4. Epub ahead of print. PMID: 38158868.
