

Review

Proteomic and Metabolomic Signatures as Predictive Biomarkers in Cancer

Sravani Boyapati

Associate Professor, Avanthi Institute of Pharmaceutical Sciences, Cherukupally, Andhra Pradesh – 531162

Corresponding Author:

Dr Sravani Boyapati

Email:

[sravaniboyapati423@gmail.co
m](mailto:sravaniboyapati423@gmail.com)

DOI: 10.62896/cplr.2.4.04

Conflict of interest: NIL

Article History

Received: 12/10/2025

Accepted: 28/11/2025

Published: 10/12/2025

Abstract:

Cancer remains one of the leading causes of death worldwide, with early diagnosis and personalized treatment being critical for improving patient outcomes. Advances in proteomics and metabolomics have provided new insights into the molecular underpinnings of cancer, offering the potential to identify novel biomarkers for early detection, prognosis, and therapeutic response. This paper explores the role of proteomic and metabolomic signatures as predictive biomarkers in cancer. By integrating high-throughput technologies and analytical methods, proteomics allows for the identification and quantification of proteins that are differentially expressed in cancerous tissues, while metabolomics uncovers changes in metabolic profiles associated with cancer. These molecular alterations can provide valuable insights into the tumor microenvironment, cancer progression, and therapeutic resistance. The review focuses on key studies highlighting the utility of proteomic and metabolomic signatures in various cancer types, emphasizing their potential for clinical translation. Furthermore, the challenges of standardizing these technologies, as well as their integration into clinical practice, are discussed. Ultimately, the paper suggests that proteomics and metabolomics offer a promising avenue for the development of non-invasive, reliable biomarkers for cancer diagnosis, monitoring, and treatment optimization.

Keywords: Proteomics, Metabolomics, Cancer biomarkers, Predictive biomarkers, Cancer diagnosis, Tumor microenvironment, Metabolic profiling, Personalized treatment, Biomarker discovery, Cancer progression.

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (<http://creativecommons.org/licenses/by/4.0>) and the Budapest Open Access Initiative (<http://www.budapestopenaccessinitiative.org/read>), which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.

1.1 Introduction:

Cancer is a complex, heterogeneous disease characterized by uncontrolled cell growth and spread to other parts of the body. It remains one of the leading causes of morbidity and mortality globally, underscoring the critical need for early detection, accurate diagnosis, and personalized treatment strategies. Traditional diagnostic methods, such as imaging and histopathology, often detect cancer at later stages when treatment options become limited, highlighting the need for innovative approaches to improve early detection and prognosis.(1)

Recent advancements in high-throughput technologies have significantly enhanced our understanding of cancer biology at the molecular level. Among these, proteomics and metabolomics have emerged as powerful tools for investigating the molecular alterations that drive cancer. Proteomics involves the large-scale study of proteins, particularly those involved in cell signaling, metabolism, and other essential cellular functions. By identifying and quantifying protein biomarkers that are differentially expressed in cancerous tissues, proteomics can provide critical insights into tumorigenesis, disease progression, and potential therapeutic targets.

Metabolomics, on the other hand, focuses on the study of small molecule metabolites, which are products of cellular metabolism. Cancer cells exhibit altered metabolic pathways that support their rapid growth and survival in hostile microenvironments. Metabolomic profiling allows for the identification of these metabolic shifts, offering a snapshot of the tumor's functional state and providing a means to monitor disease progression and therapeutic response.(2)

The integration of proteomic and metabolomic signatures as predictive biomarkers holds immense promise for cancer diagnosis, prognosis, and treatment selection. These molecular signatures can be used for early detection, identifying individuals at risk before clinical symptoms appear, and can also help predict the likelihood of disease recurrence or response to therapy. However, despite the potential of these technologies, challenges such as the standardization of analytical methods, validation of biomarkers, and integration into clinical practice remain significant hurdles.

This paper aims to explore the role of proteomic and metabolomic signatures as predictive biomarkers in cancer, reviewing the current state of research, the implications for clinical applications, and the challenges that need to be addressed for their widespread use in oncology.

1.2 Overview of Cancer as a Global Health Challenge

Cancer is one of the leading causes of death worldwide, accounting for approximately one in six deaths globally. It encompasses over 100 different diseases, all characterized by the uncontrolled growth of abnormal cells that have the potential to invade surrounding tissues and spread to other parts of the body. The incidence of cancer has been steadily rising, driven by factors such as an aging population, lifestyle choices, environmental exposures, and genetic predispositions.(3) Despite advances in treatment options, including surgery, chemotherapy, radiation therapy, and immunotherapy, cancer remains a major global health challenge. The complexity and heterogeneity of cancer make it difficult to treat, as tumors vary significantly between individuals and even within the same patient. As the global cancer burden continues to grow, improving prevention, early diagnosis, and personalized treatment strategies becomes more critical in the fight against this devastating disease.(4)

1.3 Importance of Early Detection in Cancer Management

Early detection plays a pivotal role in cancer management, as it allows for intervention at a stage when the disease is more treatable and before it has spread to other organs. Detecting cancer in its early stages significantly improves the chances of successful treatment and survival rates, as tumors are often smaller, localized, and more responsive to therapies.(5) For example, cancers such as breast, colorectal, and cervical cancer have been shown to have better outcomes when detected early through screening programs. Early-stage detection also enables less aggressive treatments, reducing the risk of side effects and improving quality of life for patients. Furthermore, early biomarkers and non-invasive diagnostic tools, such as blood tests or imaging, hold the potential to detect cancer long before symptoms manifest, providing a critical window for intervention. As such, the identification of reliable, accessible, and cost-effective early detection methods is a primary focus in modern oncology.(6)

1.4 Challenges in Traditional Cancer Diagnosis

Traditional methods of cancer diagnosis, such as imaging (CT scans, MRIs, X-rays) and histopathological examination (biopsy), have significant limitations. While imaging techniques can detect tumors, they often fail to distinguish between malignant and benign growths, and may not be able to detect early-stage cancers when tumors are small and asymptomatic. (7) Additionally, biopsy procedures, while essential for confirming a cancer diagnosis, can be invasive, uncomfortable, and risky, particularly in hard-to-reach areas or with deeply located tumors. Moreover, histopathology can sometimes be subjective, depending on the expertise of the pathologist and the quality of the tissue sample. Furthermore, traditional diagnostic methods often lack the sensitivity and specificity needed to detect cancer before it has spread or to predict a patient's response to treatment. These challenges underscore the need for more advanced, non-invasive, and highly accurate diagnostic approaches, such as molecular biomarker identification through proteomics and metabolomics, to overcome the limitations of traditional diagnostic methods.(8)

1.5 The Role of Molecular Technologies in Cancer Research

Molecular technologies have revolutionized cancer research by providing deeper insights into the

genetic, proteomic, and metabolic underpinnings of the disease. These technologies, including high-throughput sequencing, mass spectrometry, and advanced imaging techniques, allow for the comprehensive study of cancer at a molecular level.(9) By enabling the identification of genetic mutations, protein expressions, and metabolic shifts associated with cancer, molecular technologies have paved the way for more personalized approaches to diagnosis, treatment, and prognosis. Through the application of these technologies, researchers can now examine cancer in unprecedented detail, uncovering biomarkers that can predict disease progression, treatment responses, and patient outcomes. Moreover, molecular technologies enable the development of targeted therapies that specifically address the molecular alterations driving cancer, improving treatment efficacy and minimizing adverse effects. As molecular technologies continue to advance, they hold the potential to dramatically enhance cancer care by facilitating early detection, precise diagnosis, and individualized treatment strategies.(10)

1.6 Emergence of Proteomics in Cancer Research
Proteomics, the large-scale study of proteins, has emerged as a critical field in cancer research, providing key insights into the molecular mechanisms driving tumorigenesis and cancer progression. Unlike genomics, which focuses on genetic information, proteomics examines the dynamic expression and function of proteins, which are the direct effectors of cellular functions.(11) The proteomic landscape of cancer is complex, with tumors often exhibiting altered protein expression patterns due to mutations, environmental factors, and changes in cellular signaling. With the advent of high-throughput technologies such as mass spectrometry, proteomics has made significant strides in identifying proteins that are overexpressed or underexpressed in cancer cells compared to normal tissues. This has opened new avenues for understanding the biology of cancer, including the identification of novel biomarkers for early detection, prognostic prediction, and therapeutic targets. The ability to profile the proteome of cancer cells and tissues is crucial for developing more effective, targeted therapies and improving patient outcomes in oncology.(12)

1.7 Proteomics: A Tool for Identifying Cancer Biomarkers

Proteomics has become an indispensable tool for identifying cancer biomarkers, which are molecules that can indicate the presence of cancer, predict disease progression, or monitor treatment responses. Unlike traditional biomarkers, which are typically based on genetic alterations, proteomic biomarkers provide information on the actual expression of proteins that reflect the functional state of the cell.(13) This is particularly important in cancer, where protein expression can be influenced by genetic mutations, post-translational modifications, and interactions with the tumor microenvironment. By analyzing the protein composition of cancer cells and tissues using techniques like mass spectrometry, researchers can uncover distinct protein signatures that are associated with specific cancer types, stages, or therapeutic responses. Proteomic biomarkers offer several advantages, including the potential for non-invasive detection through blood or urine samples and the ability to monitor disease progression or treatment efficacy in real time. Moreover, proteomics allows for the identification of novel therapeutic targets that can lead to the development of more precise and effective cancer therapies, making it an essential component of personalized oncology.(14)

1.8 Metabolomics: Uncovering the Metabolic Alterations in Cancer

Metabolomics, the study of small molecules or metabolites produced during cellular metabolism, has emerged as a powerful tool for understanding the metabolic alterations that occur in cancer cells. Cancer cells exhibit distinct metabolic reprogramming, a phenomenon often referred to as the “Warburg effect,” where cells rely on glycolysis for energy production even in the presence of oxygen. This shift in metabolism supports the rapid growth and survival of tumors in hostile environments.(15) Metabolomics allows for the comprehensive profiling of metabolites involved in key metabolic pathways, including glycolysis, oxidative phosphorylation, and amino acid metabolism, to identify cancer-specific metabolic signatures. These metabolic changes not only reflect the biological state of the cancer but also provide insights into how tumors adapt to their microenvironment and develop resistance to treatment. By using advanced analytical techniques, such as nuclear magnetic resonance (NMR) and mass spectrometry, researchers can uncover metabolic biomarkers that have the potential to be

used for early cancer detection, prognosis, and monitoring therapeutic responses. Furthermore, understanding the metabolic landscape of cancer opens up new possibilities for developing therapies that target cancer-specific metabolic vulnerabilities, offering promising avenues for precision medicine in oncology.(16)

1.9 The Link Between Cancer and Metabolic Reprogramming

Metabolic reprogramming is one of the hallmarks of cancer, where cancer cells undergo significant shifts in their metabolic pathways to support rapid growth, proliferation, and survival. Traditionally, cells rely on oxidative phosphorylation to generate energy in the presence of oxygen, but cancer cells often favor glycolysis, even in oxygen-rich environments.(17) This shift, known as the Warburg effect, is a key feature of many cancers and is associated with the increased need for macromolecular biosynthesis, cellular proliferation, and resistance to cell death. In addition to the Warburg effect, cancer cells often exhibit altered amino acid metabolism, lipid metabolism, and the accumulation of specific metabolites that support tumorigenesis. These metabolic changes provide a favorable environment for tumor growth and can influence how cancer cells interact with their microenvironment. The ability to study these metabolic alterations using metabolomics provides critical insights into cancer biology and offers potential targets for novel therapeutic strategies. By understanding the underlying mechanisms of metabolic reprogramming in cancer, researchers can develop strategies to disrupt these pathways, providing new avenues for treatment.(18)

1.10 Proteomic and Metabolomic Signatures as Predictive Biomarkers

Proteomic and metabolomic signatures have the potential to serve as powerful predictive biomarkers in cancer. These signatures are composed of a set of proteins and metabolites whose presence or abundance can reflect the presence of cancer, its stage, and how it might respond to treatment. Proteomic biomarkers provide valuable insights into the protein expression profiles of cancer cells, revealing alterations in key cellular functions such as signaling, apoptosis, and DNA repair.(19) Similarly, metabolomic signatures offer a snapshot of the tumor's metabolic state, revealing shifts in metabolic pathways that are often specific to cancer cells. By analyzing these molecular signatures,

researchers can develop non-invasive diagnostic tools for early cancer detection, as well as predictive markers for disease progression and treatment efficacy. For instance, a specific protein or metabolite signature may predict how well a patient will respond to a particular therapy or how likely they are to experience disease recurrence. The integration of both proteomic and metabolomic data holds great promise for improving patient outcomes by enabling more precise and personalized treatment strategies, reducing the trial-and-error approach of traditional treatments.(20)

1.11 High-Throughput Technologies in Cancer Research

High-throughput technologies have revolutionized cancer research by enabling the rapid and simultaneous analysis of vast amounts of data, facilitating the identification of molecular signatures that drive cancer. These technologies, including next-generation sequencing (NGS), mass spectrometry, and microarrays, allow researchers to examine genomic, proteomic, and metabolomic data in a high-throughput manner, providing a comprehensive understanding of cancer biology. With NGS, researchers can sequence the entire genome or transcriptome of cancer cells to identify mutations, gene expression changes, and alterations in regulatory pathways.(21) Mass spectrometry is widely used in proteomics and metabolomics to profile proteins and metabolites in cancer cells, while microarrays enable the study of gene expression patterns across large cohorts of cancer patients. High-throughput screening also plays a vital role in drug discovery, helping identify potential therapeutic compounds by testing thousands of small molecules against cancer cell lines. These advancements provide deeper insights into the molecular mechanisms driving cancer and open new possibilities for discovering biomarkers, therapeutic targets, and personalized treatment strategies.(22)

1.12 Proteomics and Metabolomics in Cancer Diagnosis and Prognosis

Proteomics and metabolomics have emerged as critical tools in cancer diagnosis and prognosis, offering significant advantages over traditional methods. Proteomics helps identify specific proteins that are overexpressed or mutated in cancer cells, providing biomarkers for early diagnosis and assessment of cancer progression. By profiling the proteome, researchers can pinpoint proteins

involved in crucial pathways such as cell cycle regulation, apoptosis, and metastasis, which are often disrupted in cancer. (23) Similarly, metabolomics analyzes the metabolic changes that occur in cancer cells, offering insights into how tumors adapt to their environment and the mechanisms they use to promote growth and survival. By integrating both proteomic and metabolomic data, clinicians can develop a more accurate and comprehensive understanding of a patient's cancer, which is essential for prognosis. These molecular profiles can help predict disease progression, the likelihood of recurrence, and response to treatment, allowing for more personalized and effective management. For example, metabolomic profiling can detect specific metabolites that indicate aggressive disease or resistance to therapy, while proteomic signatures may identify biomarkers linked to treatment sensitivity. Together, proteomics and metabolomics offer powerful tools to improve cancer diagnosis, prognostication, and personalized treatment planning.(24)

1.13 Integrating Proteomic and Metabolomic Data in Cancer Studies

Integrating proteomic and metabolomic data in cancer studies offers a more comprehensive understanding of the molecular basis of cancer. While proteomics focuses on identifying and quantifying proteins involved in cellular functions, and metabolomics examines the small molecules that reflect the biochemical processes occurring in cancer cells, combining both approaches enables a more holistic view of cancer biology.(25) Proteins and metabolites are closely linked, with metabolic changes often influencing protein function and expression. For example, the activation of certain oncogenes can trigger metabolic shifts, while metabolic reprogramming can affect signaling pathways and protein stability. By integrating data from both proteomics and metabolomics, researchers can identify biomarkers that are more accurate and reflective of the dynamic nature of cancer. This multi-omics approach allows for the identification of biomarkers for early detection, monitoring disease progression, and predicting patient responses to therapies. Furthermore, it can reveal novel therapeutic targets that address both protein alterations and metabolic vulnerabilities, paving the way for more effective and personalized treatment strategies in oncology.(26)

1.14 Metabolomics: A Snapshot of Cancer Cell Function

Metabolomics provides a snapshot of the biochemical processes that are actively occurring within cancer cells. Unlike genomic or proteomic approaches that reveal static snapshots of genetic and protein expressions, metabolomics offers insights into the dynamic, real-time processes of cellular metabolism.(27) Cancer cells are known for their altered metabolic state, which supports their rapid growth, survival, and ability to metastasize. This altered metabolism, often referred to as metabolic reprogramming, includes increased glycolysis (the Warburg effect), changes in amino acid and lipid metabolism, and shifts in energy production. Metabolomic profiling can reveal these shifts by identifying the metabolites involved in these pathways, such as elevated lactate, increased glutamine, and altered fatty acid metabolism. This type of analysis provides critical insights into how cancer cells adapt to their environment, survive under nutrient-deprived conditions, and evade therapeutic interventions. By studying these metabolic signatures, researchers can gain a better understanding of cancer progression and identify potential biomarkers for early detection, prognosis, and treatment response.(28)

1.15 The Potential of Personalized Treatment in Cancer Using Biomarkers

The potential of personalized treatment in cancer using biomarkers lies in the ability to tailor therapeutic strategies based on the molecular profile of an individual's cancer. Cancer is a highly heterogeneous disease, with tumors often exhibiting unique genetic, proteomic, and metabolic signatures. By identifying specific biomarkers that characterize a patient's cancer, clinicians can select therapies that target the specific molecular alterations driving the disease.(29) This personalized approach allows for more precise treatment, reducing the risk of unnecessary side effects and increasing the likelihood of treatment success. For instance, proteomic biomarkers such as HER2 overexpression in breast cancer or EGFR mutations in non-small cell lung cancer can help guide the use of targeted therapies. Similarly, metabolomic profiles can reveal metabolic vulnerabilities that are specific to cancer cells, offering new opportunities for targeted interventions. Moreover, using both proteomic and metabolomic data, clinicians can monitor the effectiveness of treatment in real time and adjust

strategies as needed. This precision medicine approach holds the promise of significantly improving cancer outcomes by ensuring that

treatments are not only more effective but also tailored to the individual patient's disease characteristics.(30)

Cancer Type	Proteomic Signatures	Metabolomic Signatures	Clinical Application
Breast Cancer	Overexpression of HER2, Ki-67, p53	Increased lactate, decreased citrate, altered lipid metabolism	Early detection, prognosis, and response to therapy
Lung Cancer	EGFR, KRAS mutations, p53	Increased glycolysis, altered amino acid metabolism, lactate elevation	Prognosis, prediction of therapy response, and recurrence risk
Colorectal Cancer	p53, Cyclin D1, CA 19-9	Elevated glucose, pyruvate, amino acid changes	Early detection, prognosis, and treatment monitoring
Pancreatic Cancer	CA 19-9, MMP-9, p53	Altered fatty acid oxidation, elevated glycolysis, lactate increase	Detection of early disease and monitoring of therapeutic responses
Prostate Cancer	PSA, PCA3, Androgen Receptor	Decreased citrate, elevated choline metabolites	Prognosis, detection of recurrence, and therapeutic monitoring

CONCLUSION

The integration of proteomics and metabolomics into cancer research represents a transformative approach to understanding the molecular complexities of cancer and enhancing clinical outcomes. These fields offer profound insights into the molecular alterations driving tumorigenesis, providing a detailed map of protein expression and metabolic reprogramming in cancer cells. Proteomic and metabolomic signatures hold immense potential as predictive biomarkers for early cancer detection, prognosis, and therapeutic response, paving the way for more personalized and effective treatment strategies. By identifying specific protein and metabolic profiles associated with different cancer types, stages, and treatment outcomes, these technologies can significantly improve patient management, reduce reliance on invasive diagnostic procedures, and minimize the trial-and-error approach in therapy selection.

However, despite the promising potential of proteomics and metabolomics, challenges remain in their clinical translation. Issues such as standardization of analytical techniques, validation of biomarkers, and integration into routine clinical practice need to be addressed for widespread adoption. Continued advancements in high-throughput technologies, data integration, and bioinformatics will be essential to overcome these obstacles and realize the full clinical potential of these molecular technologies.

In conclusion, the combination of proteomic and metabolomic profiling offers a promising frontier for precision oncology, enabling earlier detection, more accurate prognostication, and more tailored treatments. As research progresses, these approaches could ultimately lead to improved survival rates and quality of life for cancer patients, marking a significant step forward in the fight against cancer.

REFERENCES:

1. Mandal S, Mandal S. Topical Delivery of Sulfasalazine via Nanosponges-Loaded Hydrogels: A Novel Approach for Enhanced Psoriasis Management. International Journal of Multidisciplinary Science and Innovation. 2025 Apr 25:19-23.
2. Topi D, Dubey CK, Sharma S, Fasiha B, Mandal S. A Review of Plant-Based Natural Products for the Management of Diabetes: From Ethnobotany to Clinical Evidence. International Journal of Natural Products and Alternative Medicine. 2025 Mar 20:16-22.
3. Mandal S, Kumar M, Bhumika K, Ali S, Jahan I, Mandal S. Impact of Electronic Health Records and Automation on Pharmaceutical Management Efficiency: A Narrative Review. International Journal of Health Sciences and Engineering. 2025 Feb 17:21-36.

4. Kumar M, Manda S, Bhumika K, Ali S, Jahan I, Mandal S. Targeted Drug Delivery Systems in Oncology: A Review of Recent Patents and future directions. *International Journal of Health Sciences and Engineering*. 2025 Feb 17:37-57.
5. Mandal S. Advances and Future Prospects of Lipid-Based Nanocarriers in Targeted Cancer Therapy: A Comprehensive Review. *Current Cancer Drug Targets*. 2025 May 13.
6. Chatterjee S, Ahamed IN, Aggarwal M, Mandal S, Mandal S. Bioadhesive Self-Nanoemulsifying Drug Delivery Systems (BSNEDDS): A Novel Strategy to Enhance Mucosal Drug Absorption and Bioavailability. *International Journal of Multidisciplinary Science and Innovation*. 2025 Apr 25:24-7.
7. Velraj M, Bhyan B, Mishram R, Padhy RP, Mandal S. Recent Advances in the Isolation and Characterization of Antimicrobial Compounds. *International Journal of Natural Products and Alternative Medicine*. 2025 Mar 20:23-9.
8. Kotnala M, Porwal P, Mandal S, Mandal S. The Role of Plant Metabolites in Enhancing Immunomodulatory Responses in Autoimmune Diseases. *International Journal of Natural Products and Alternative Medicine*. 2025 Mar 20:30-6.
9. Monisha R, Jaqueline RS, Yadav K, Mandal S, Mandal S. Psychological Well-Being and Oral Health: The Role of Dentistry in Comprehensive Healthcare. *International Journal of Integrative Dental and Medical Sciences*. 2025 Mar 17:22-9.
10. Ismail A, KR PK, Mandal S. The Role of Oral Microbiota in Systemic Diseases: Bridging the gap between Dentistry and Medicine. *International Journal of Integrative Dental and Medical Sciences*. 2025 Mar 17:30-6.
11. Chatterjee S, Ahamed IN, Aggarwal M, Mandal S, Mandal S. Advances in Dental Biomaterials: Bridging Dentistry and Medicine for Improved Patient Outcomes. *International Journal of Integrative Dental and Medical Sciences*. 2025 Mar 17:1-6.
12. Kumar S, Mandal S, Bhyan B, Pandey A, Mishra R, Jain A. Digital Marketing Trends and Consumer Engagement: A Review. *The International Journal of Humanities, Social Sciences and Business Management*. 2025 Feb 27:6-10.
13. Mandal S, Mandal S. Cryptocurrency and the Future of Financial Markets: A Mini Review. *The International Journal of Humanities, Social Sciences and Business Management*. 2025 Feb 27:21-7.
14. Mandal S, Mandal S. Mesalamine Microemulsions for Crohn's Disease: A Review. *International Journal of Health Sciences and Engineering*. 2025 Feb 17:1-8.
15. Bhumika K, Ali S, Jahan I, Kumar M, Mandal S, Mandal S. Enhanced Bioavailability and Targeted Delivery of Mesalamine for Crohn's Disease Using Microemulsion Formulations. *International Journal of Health Sciences and Engineering*. 2025 Feb 17:16-20.
16. Mandal S, Mandal S. Design and Evaluation of Liposomal Carriers for Targeted Delivery of siRNA In Cancer Therapy. *Current Pharmaceutical Letters And Reviews*. 2024 Oct 3:53-63.
17. Bhumika K, Mandal S. Exploring the Chemical Composition and Cardioprotective Properties of Plumeria obtusa Using Advanced LC-MS/MS and Computational Methods in a Rabbit Model of AdriamycinInduced Myocardial Injury. *Current Pharmaceutical Letters And Reviews*. 2024 Oct 3:64-70.
18. Mandal S, Mandal S. Green Biomaterials from plants: Harnessing Nature for Sustainable Solutions. *Current Pharmaceutical Letters And Reviews*. 2024 Oct 3:11-24.
19. Shiva K, Mandal S. Development and Characterization of Bioinspired Cationic Lipid Nanocarriers for Enhanced Anti-Cancer Vaccine Delivery and Tumor Inhibition: In Vitro and In Vivo Evaluation. *Current Pharmaceutical Letters And Reviews*. 2024 Oct 3:71-7.
20. Mandal S, Mandal S. Strategic Design and Synthesis of Betulinic Acid Derivatives for Targeted Cancer Treatment. *Current Pharmaceutical Letters And Reviews*. 2024 Oct 3:88-94.
21. Jahan I, Mandal S. Development of Multi-Functional Nanocarriers for Combined Chemo and Photothermal Cancer Therapy. *Current Pharmaceutical Letters And Reviews*. 2024 Oct 3:78-87.
22. Mandal S, Singh AP. Development and In-Vitro Characterization of Gentamycin Sulphate Nanoemulgel for Ophthalmic

Applications. *International Journal of Drug Delivery Technology*. 2024;14(4):2347-58. doi: 10.25258/ijddt.14.4.56

23. Suraj Mandal, *Murraya koenigii*: A Source of Bioactive Compounds for Inflammation and Pain Management, *Current Bioactive Compounds*; Volume 21, Issue , Year 2025, e15734072348822. DOI: 10.2174/01157340723488225032407343 9

24. Jiyaul Hak, Iram Jahan, Nasiruddin Ahmad Farooqui, Atul Pratap Singh, Himanchal Sharma, Smriti Gohri, Anshu Gujjar, Suraj Mandal, *Nanochips in the Field of Oncology: Advancements and Potential for Enhanced Cancer Therapy*, *Current Cancer Therapy Reviews*; Volume 21, Issue , Year 2025, e15733947343855. DOI: 10.2174/011573394734385524123011582 0

25. Iram Jahan, Jiyaul Hak, Suraj Mandal, Shadab Ali, Sayad Ahad Ali, Nasiruddin Ahmad Farooqui, *Isoquinoline Quaternary Alkaloid (IQA) Nano-dressings: A Comprehensive Review on Design Strategies, Therapeutic Applications, and Advancements in Transdermal Delivery for Chronic Wound Management*, *Recent Advances in Drug Delivery and Formulation*; Volume 19, Issue , Year 2025, e26673878330005. DOI: 10.2174/012667387833000525032606010 3

26. Mandal S, Vishvakarma P. *Nanoemulgel: A Smarter Topical Lipidic Emulsion-based Nanocarrier*. *Indian J of Pharmaceutical Education and Research*. 2023;57(3s):s481-s498.

27. Mritunjay Kumar Ojha, Nalluri Satish Kumar, Umesh Kumar Sharma, Prakash Gadipelli, Suraj Mandal, Farah Deeba, Monalisa Khuntia, Hariballav Mahapatra (2024) Exploring the Potential of Artificial Intelligence in Optimizing Clinical Trial Design for More Efficient Drug Development. *Library Progress International*, 44(3), 9498-9510.

28. Mandal S, Jaiswal DV, Shiva K. A review on marketed *Carica papaya* leaf extract (CPLE) supplements for the treatment of dengue fever with thrombocytopenia and its drawback. *International Journal of Pharmaceutical Research*. 2020 Jul;12(3).

29. Mandal S, Bhumika K, Kumar M, Hak J, Vishvakarma P, Sharma UK. A Novel Approach on Micro Sponges Drug Delivery System: Method of Preparations, Application, and its Future Prospective. *Indian J of Pharmaceutical Education and Research*. 2024;58(1):45-63.

30. Mandal S, Vishvakarma P, Bhumika K. Developments in Emerging Topical Drug Delivery Systems for Ocular Disorders. *Curr Drug Res Rev*. 2023 Dec 29. doi: 10.2174/012589977526663423121304470 4. Epub ahead of print. PMID: 38158868.
