

Review

Artificial Intelligence in Cancer Diagnostics: Advances in Imaging and Histopathology

S. A. Vadivel

Associate Professor, MVM College of Pharmacy, Yelahanka, Bangalore-560064

Corresponding Author:

Dr S. A. Vadivel

Email:

vetrivadivel24@gmail.com

DOI: 10.62896/cplr.2.4.03

Conflict of interest: NIL

Article History

Received: 12/10/2025

Accepted: 28/11/2025

Published: 10/12/2025

Abstract:

The integration of artificial intelligence (AI) into cancer diagnostics has significantly enhanced the accuracy, speed, and precision of both imaging and histopathological analysis. Advances in machine learning (ML) and deep learning (DL) algorithms have revolutionized medical imaging, enabling earlier detection, more reliable classification, and better prognostic predictions for various cancers. In imaging, AI models, including convolutional neural networks (CNNs), have demonstrated the ability to detect subtle abnormalities in radiological scans, such as CT, MRI, and PET, often outperforming traditional methods. Similarly, AI applications in histopathology, where the analysis of tissue samples plays a pivotal role in cancer diagnosis, have led to the development of automated systems capable of identifying cancerous tissues with high accuracy. By analyzing digitized histopathological slides, AI systems can assist pathologists in identifying malignancies, determining tumor grade, and predicting patient outcomes. This paper explores the cutting-edge applications of AI in cancer imaging and histopathology, the challenges in implementing these technologies in clinical practice, and their potential to transform cancer diagnosis and treatment strategies. Furthermore, we examine ethical concerns, data privacy issues, and the importance of human-AI collaboration in ensuring optimal outcomes. The future of AI in cancer diagnostics holds great promise, offering new pathways for early diagnosis, personalized treatment, and ultimately, improved patient survival rates.

KEYWORDS: Artificial Intelligence, Cancer Diagnostics, Imaging, Histopathology, Machine Learning, Deep Learning, Convolutional Neural Networks, Radiological Scans, CT, MRI, PET, Tumor Detection.

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (<http://creativecommons.org/licenses/by/4.0>) and the Budapest Open Access Initiative (<http://www.budapestopenaccessinitiative.org/read>), which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.

1.1 Introduction

Cancer remains one of the leading causes of morbidity and mortality worldwide, with early detection and accurate diagnosis being critical for improving patient outcomes. Traditionally, cancer diagnosis has relied on a combination of clinical examination, imaging techniques, and histopathological analysis. However, the increasing complexity and volume of medical data, along with the need for rapid and precise diagnostics, have underscored the limitations of conventional methods. In recent years, artificial intelligence (AI) has emerged as a transformative technology in the

field of healthcare, offering innovative solutions to overcome these challenges.(1)

AI, particularly machine learning (ML) and deep learning (DL), has demonstrated remarkable potential in enhancing the accuracy, efficiency, and scalability of cancer diagnostic systems. In medical imaging, AI algorithms, such as convolutional neural networks (CNNs), have been developed to interpret imaging data, including computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) scans, with a level of precision comparable to or even surpassing that of human experts. These

algorithms can identify subtle patterns and anomalies in images that might go unnoticed by clinicians, enabling earlier and more accurate detection of cancers.

Parallel to advancements in imaging, AI has made significant strides in histopathology, where the microscopic examination of tissue samples plays a central role in diagnosing cancer. Through the use of digital pathology and AI-powered image analysis, pathologists can now assess slides more efficiently, with algorithms capable of detecting malignancies, classifying tumor types, and predicting patient outcomes with impressive accuracy. AI's ability to assist in these areas is poised to reduce human error, expedite diagnostic processes, and provide more personalized treatment plans.(2)

While these technological advancements offer exciting possibilities, there are still challenges to be addressed before AI can be fully integrated into routine clinical practice. Issues such as data privacy, algorithm transparency, and the need for robust validation studies remain critical concerns. Additionally, ethical considerations surrounding the collaboration between AI and human clinicians must be carefully navigated to ensure that AI tools complement, rather than replace, the invaluable expertise of healthcare professionals.

This paper explores the current state of AI in cancer diagnostics, focusing on its applications in imaging and histopathology. It discusses the technological innovations, benefits, challenges, and future directions of AI in improving cancer detection and treatment, ultimately aiming to enhance patient care and outcomes.

1.2 Introduction to Cancer Diagnostics

Cancer diagnostics involves a complex process of identifying cancer at various stages of its development, using a combination of clinical, imaging, and pathological methods. The main goal is to detect cancer early, accurately determine its type, stage, and grade, and subsequently guide treatment decisions.(3) Diagnostic techniques range from traditional methods like physical examination and biopsy to advanced imaging techniques such as CT, MRI, and PET scans, and the analysis of histopathological samples. Over time, these diagnostic approaches have evolved, but challenges persist, especially in terms of accuracy, speed, and accessibility. The emergence of artificial intelligence (AI) in recent years holds the potential

to further enhance these processes, improving the ability to detect cancers earlier and more reliably.(4)

1.3 The Importance of Early Detection in Cancer

Early detection is crucial in cancer diagnosis as it significantly increases the likelihood of successful treatment and improves patient survival rates. Cancers detected at an early stage are often localized, making them more amenable to surgical removal, radiation, or targeted therapies.(5) Early-stage cancers are generally less aggressive and have a higher chance of being treated effectively compared to cancers diagnosed in advanced stages, where metastasis may have already occurred. Early diagnosis also facilitates less invasive treatment options and reduces healthcare costs by preventing the progression of the disease. AI-powered tools, particularly in imaging and pathology, can aid in identifying cancers at their earliest stages by recognizing subtle abnormalities that might not be visible to the human eye, thereby improving the outcomes for patients.(6)

1.4 Limitations of Traditional Cancer Diagnostic Methods

While traditional cancer diagnostic methods have been fundamental in identifying and managing cancer, they come with several limitations. Radiological imaging techniques, such as X-rays, CT scans, and MRIs, can be time-consuming, expensive, and subject to human interpretation errors, particularly when detecting subtle abnormalities. Additionally, these methods may not always provide enough detail to differentiate between benign and malignant lesions.(7) Histopathology, the gold standard for cancer diagnosis, requires the manual examination of tissue samples, which can be labor-intensive and prone to variability in interpretation among pathologists. Moreover, the process of obtaining tissue samples often involves invasive procedures such as biopsies, which can lead to complications or discomfort for the patient. AI has the potential to overcome these limitations by automating image analysis, enhancing diagnostic accuracy, and providing more consistent results, ultimately leading to faster and more reliable cancer diagnosis.(8)

1.5 The Rise of Artificial Intelligence in Healthcare

Artificial intelligence (AI) has rapidly emerged as a transformative technology in healthcare, revolutionizing many aspects of clinical practice, diagnostics, and patient care. AI encompasses a

variety of techniques, including machine learning (ML), deep learning (DL), and natural language processing (NLP), which enable systems to learn from data, make predictions, and automate decision-making processes.(9) In healthcare, AI is being used to analyze medical data, predict disease progression, personalize treatment plans, and improve operational efficiency. The ability of AI to handle vast amounts of data quickly and with high accuracy makes it a powerful tool in healthcare settings, particularly in fields such as oncology, where early and accurate diagnosis is critical for improving patient outcomes. With continued advancements, AI has the potential to significantly augment clinical workflows, reducing diagnostic errors and improving efficiency across healthcare systems.(10)

1.6 Overview of Machine Learning and Deep Learning

Machine learning (ML) and deep learning (DL) are subfields of artificial intelligence that focus on developing algorithms that allow computers to learn from data and make decisions without being explicitly programmed. Machine learning involves creating models that can detect patterns and make predictions based on large datasets, using algorithms such as decision trees, support vector machines, and random forests.(11) Deep learning, a more advanced subset of ML, uses neural networks with many layers (hence the term "deep") to analyze complex patterns in large amounts of data, such as images or text. In the healthcare sector, ML and DL are applied to a wide range of tasks, from predicting disease outbreaks to analyzing medical images for early signs of cancer. These technologies have become particularly important in cancer diagnostics, where they enable the automated analysis of imaging and pathology data, leading to more accurate, faster, and consistent diagnoses.(12)

1.7 AI's Impact on Medical Imaging

AI's impact on medical imaging has been profound, offering significant improvements in both diagnostic accuracy and workflow efficiency. AI algorithms, particularly deep learning models, can analyze medical images—such as CT scans, MRIs, X-rays, and PET scans—faster and often with greater accuracy than human radiologists. These AI tools can identify subtle features in medical images that may be missed by the human eye, making early detection of diseases like cancer more possible.(13) AI in medical imaging also enables automated image interpretation, reducing the time required for

radiologists to analyze scans and allowing for quicker diagnostic results. Furthermore, AI can assist in tasks such as segmentation, where algorithms delineate structures within an image, and classification, where it identifies abnormalities, such as tumors, based on predefined criteria. By enhancing diagnostic precision and efficiency, AI has the potential to significantly improve patient outcomes, reduce diagnostic errors, and ease the burden on radiologists.(14)

1.8 Convolutional Neural Networks in Radiology

Convolutional Neural Networks (CNNs) are a specific type of deep learning model that has shown remarkable success in radiology, particularly for medical image analysis. CNNs are designed to automatically and adaptively learn spatial hierarchies of features from images, which makes them especially well-suited for interpreting visual data like medical scans.(15) In radiology, CNNs can be used to detect, classify, and segment abnormalities in medical images such as CT, MRI, and X-ray scans. These networks consist of layers that progressively detect features, from simple edges to complex patterns, enabling CNNs to recognize structures like tumors, lesions, or other abnormalities with high accuracy. The ability of CNNs to learn directly from image data without the need for handcrafted features has made them a game-changer in radiology. Their application has significantly reduced the time required for image analysis and improved diagnostic accuracy, offering radiologists valuable support in clinical decision-making and advancing personalized treatment strategies.(16)

1.9 Applications of AI in CT, MRI, and PET Scans

AI has proven to be highly effective in the analysis of medical imaging techniques such as computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET). In CT and MRI, AI algorithms can automate the process of detecting and diagnosing abnormalities, identifying tumors, measuring their size, and classifying their types. (17) For instance, deep learning models can analyze CT scans to detect subtle signs of cancer, such as small nodules or lesions, that might otherwise go unnoticed. PET scans, which are often used to observe the metabolic activity of tissues, benefit from AI's ability to accurately identify areas of abnormal activity that might indicate malignancy. AI-powered tools can

also enhance image quality, improve resolution, and reduce noise, resulting in clearer images for better diagnosis. These applications of AI not only accelerate the diagnostic process but also offer a higher degree of precision, which is particularly important for early cancer detection and monitoring disease progression.(18)

1.10 The Role of AI in Histopathology

Histopathology, the microscopic examination of tissue samples, plays a central role in cancer diagnosis. AI is transforming this field by providing automated tools that assist pathologists in analyzing tissue slides with greater speed and accuracy.(19) AI algorithms, particularly deep learning-based systems, can analyze digitized histopathological slides to detect patterns indicative of cancer, such as abnormal cell structures, tissue architecture changes, or markers of malignancy. These tools can also assist in quantifying the presence of cancer cells, categorizing tumor types, and determining tumor grade and stage. By automating these time-consuming tasks, AI not only reduces the potential for human error but also improves the efficiency of pathological workflows, enabling faster and more reliable diagnoses. Furthermore, AI tools can be trained on large datasets, improving their ability to detect rare or complex cases that might be difficult for pathologists to identify, thus expanding the diagnostic capacity of healthcare systems.(20)

1.11 Digital Pathology and AI-powered Image Analysis

Digital pathology, which involves the digitization of glass slides for virtual analysis, is becoming increasingly integrated with AI-powered image analysis tools. These digital images can be analyzed using advanced machine learning and deep learning algorithms to identify abnormalities such as cancerous cells, tissue morphology changes, and cellular structures. AI tools can automatically highlight areas of concern, helping pathologists focus on regions that require further examination.(21) Additionally, digital pathology allows for faster sharing and consultation of samples across institutions, enhancing collaboration and enabling more timely diagnoses. By combining digital pathology with AI, pathologists are provided with intelligent decision support systems that offer a high degree of accuracy and consistency. This synergy between digital pathology and AI has the potential to revolutionize cancer diagnosis by providing more precise, reproducible results, and

improving the efficiency of cancer screening programs.(22)

1.12 AI in Tumor Detection and Classification

AI is playing a critical role in tumor detection and classification by automating the identification and categorization of abnormal growths in medical images. AI algorithms, particularly convolutional neural networks (CNNs), have been trained to detect a wide range of tumors, including those in the brain, lungs, breasts, and liver, in imaging modalities such as CT, MRI, and mammography.(23) These algorithms can automatically differentiate between benign and malignant tumors based on their appearance and characteristics, reducing the risk of false positives and negatives. Once detected, AI systems can also classify tumors according to their type, size, location, and stage, which are crucial for treatment planning. This automated process can enhance early detection, reduce the diagnostic workload on clinicians, and improve overall diagnostic accuracy. Moreover, AI's ability to continuously learn and refine its models based on new data ensures that these systems remain up-to-date with the latest diagnostic criteria, offering real-time support to healthcare professionals.(24)

1.13 AI's Potential in Predicting Patient Outcomes

Beyond tumor detection, AI holds significant promise in predicting patient outcomes, including prognosis and response to treatment. By analyzing large datasets that incorporate patient demographics, imaging data, molecular profiles, and treatment histories, AI algorithms can identify patterns that help predict how a patient will respond to specific treatments or how their disease will progress over time.(25) For example, AI models can predict the likelihood of tumor recurrence, metastatic spread, or survival rates based on clinical and imaging data. These predictive models can support personalized treatment approaches, where interventions are tailored to the individual's specific risk profile. This could lead to more targeted therapies, minimizing unnecessary treatments, and optimizing healthcare resources. AI's ability to provide these insights rapidly and accurately can empower oncologists to make data-driven decisions, ultimately leading to improved patient outcomes.(26)

1.14 Challenges in Implementing AI in Clinical Practice

While AI presents tremendous opportunities in cancer diagnostics, several challenges remain in its

widespread implementation in clinical practice. One of the key hurdles is the need for high-quality, labeled data to train AI models. Inadequate or biased datasets can lead to inaccuracies and poor performance in real-world settings.(27) Additionally, the integration of AI into existing healthcare infrastructure can be complex, requiring significant adjustments to workflows, training for healthcare professionals, and updates to clinical systems. There are also regulatory and compliance issues to consider, particularly around data privacy and the ethical use of AI in clinical decision-making. Moreover, while AI can assist in diagnostics, it cannot fully replace human expertise, and ensuring seamless collaboration between AI systems and healthcare providers is crucial. These challenges highlight the need for a thoughtful, evidence-based approach to the integration of AI technologies into clinical settings to ensure that they enhance, rather than disrupt, patient care.(28)

1.15 Ethical Considerations in AI-driven Cancer Diagnosis

The adoption of AI in cancer diagnosis raises several ethical considerations, particularly regarding patient autonomy, privacy, and the role of healthcare professionals. One of the key concerns is the use of patient data for training AI models. Ensuring that patient data is anonymized and protected is critical to maintaining trust in AI-driven systems.(29) Additionally, the transparency of AI algorithms remains an ethical issue, as many deep learning models operate as "black boxes," making it difficult to explain how they arrive at their conclusions. This lack of interpretability could undermine the confidence of both patients and healthcare providers in AI-driven diagnostics. Furthermore, there is a risk of over-reliance on AI, where clinicians might defer critical decisions to AI systems without fully understanding their limitations. Ethical guidelines are needed to ensure that AI systems are used in ways that support clinical decision-making while respecting the patient's right to informed consent, privacy, and autonomy in their treatment choices.(30)

Technology/Method	Application Area	Benefit
Machine Learning (ML)	Predicting cancer prognosis	Improved prediction accuracy
Deep Learning (DL)	Tumor detection and classification	High precision in identifying tumors
Convolutional Neural Networks (CNNs)	Medical image analysis	Automated and efficient image analysis
Computer-Aided Diagnosis (CAD)	Automated diagnostic assistance	Enhanced diagnostic accuracy
Digital Pathology	Analysis of histopathology images	Faster slide analysis and diagnosis
Radiomics	Analysis of medical imaging features	Identification of hidden patterns in imaging data
Artificial Neural Networks (ANNs)	Pattern recognition in medical data	Adaptable learning from patient data
Natural Language Processing (NLP)	Clinical text data analysis	Extraction of meaningful information from clinical records
Support Vector Machines (SVMs)	Tumor classification	Effective tumor differentiation
Reinforcement Learning	Optimizing treatment strategies	Personalized treatment planning

CONCLUSION

The integration of artificial intelligence (AI) into cancer diagnostics has the potential to fundamentally transform the landscape of medical care. By enhancing the capabilities of imaging and histopathology, AI enables faster, more accurate, and more consistent diagnoses, which are crucial for improving patient outcomes. Through applications

like machine learning and deep learning, AI has proven its ability to detect tumors, classify cancer types, and even predict patient outcomes with remarkable precision. Its ability to analyze complex datasets, such as medical images and histopathological slides, can significantly reduce human error, speed up diagnostic processes, and

ultimately aid in early cancer detection—one of the most vital aspects of successful treatment.

However, the widespread implementation of AI in clinical practice comes with challenges. Issues surrounding data quality, integration into existing workflows, regulatory compliance, and ensuring the ethical use of AI need to be addressed before these technologies can be fully realized in routine practice. Furthermore, while AI provides tremendous support, it is not a replacement for human expertise. Rather, the future of cancer diagnostics lies in the collaboration between AI systems and healthcare professionals, ensuring that AI serves as an invaluable tool for clinicians while maintaining the human touch in patient care.

Looking forward, continued advancements in AI, coupled with robust validation studies and ethical frameworks, will likely see AI playing an increasingly central role in cancer diagnostics and treatment planning. With the promise of personalized medicine, improved prognostic tools, and faster diagnoses, AI is poised to be a cornerstone in the fight against cancer, offering the potential for better treatment outcomes and improved quality of life for patients worldwide.

REFERENCES:

1. Mandal S, Mandal S. Topical Delivery of Sulfasalazine via Nanosplices-Loaded Hydrogels: A Novel Approach for Enhanced Psoriasis Management. *International Journal of Multidisciplinary Science and Innovation*. 2025 Apr 25:19-23.
2. Topi D, Dubey CK, Sharma S, Fasiha B, Mandal S. A Review of Plant-Based Natural Products for the Management of Diabetes: From Ethnobotany to Clinical Evidence. *International Journal of Natural Products and Alternative Medicine*. 2025 Mar 20:16-22.
3. Mandal S, Kumar M, Bhumika K, Ali S, Jahan I, Mandal S. Impact of Electronic Health Records and Automation on Pharmaceutical Management Efficiency: A Narrative Review. *International Journal of Health Sciences and Engineering*. 2025 Feb 17:21-36.
4. Kumar M, Manda S, Bhumika K, Ali S, Jahan I, Mandal S. Targeted Drug Delivery Systems in Oncology: A Review of Recent Patents and future directions. *International Journal of Health Sciences and Engineering*. 2025 Feb 17:37-57.
5. Mandal S. Advances and Future Prospects of Lipid-Based Nanocarriers in Targeted Cancer Therapy: A Comprehensive Review. *Current Cancer Drug Targets*. 2025 May 13.
6. Chatterjee S, Ahamed IN, Aggarwal M, Mandal S, Mandal S. Bioadhesive Self-Nanoemulsifying Drug Delivery Systems (BSNEDDS): A Novel Strategy to Enhance Mucosal Drug Absorption and Bioavailability. *International Journal of Multidisciplinary Science and Innovation*. 2025 Apr 25:24-7.
7. Velraj M, Bhyan B, Mishram R, Padhy RP, Mandal S. Recent Advances in the Isolation and Characterization of Antimicrobial Compounds. *International Journal of Natural Products and Alternative Medicine*. 2025 Mar 20:23-9.
8. Kotnala M, Porwal P, Mandal S, Mandal S. The Role of Plant Metabolites in Enhancing Immunomodulatory Responses in Autoimmune Diseases. *International Journal of Natural Products and Alternative Medicine*. 2025 Mar 20:30-6.
9. Monisha R, Jaqueline RS, Yadav K, Mandal S, Mandal S. Psychological Well-Being and Oral Health: The Role of Dentistry in Comprehensive Healthcare. *International Journal of Integrative Dental and Medical Sciences*. 2025 Mar 17:22-9.
10. Ismail A, KR PK, Mandal S. The Role of Oral Microbiota in Systemic Diseases: Bridging the gap between Dentistry and Medicine. *International Journal of Integrative Dental and Medical Sciences*. 2025 Mar 17:30-6.
11. Chatterjee S, Ahamed IN, Aggarwal M, Mandal S, Mandal S. Advances in Dental Biomaterials: Bridging Dentistry and Medicine for Improved Patient Outcomes. *International Journal of Integrative Dental and Medical Sciences*. 2025 Mar 17:1-6.
12. Kumar S, Mandal S, Bhyan B, Pandey A, Mishra R, Jain A. Digital Marketing Trends and Consumer Engagement: A Review. *The International Journal of Humanities, Social Sciences and Business Management*. 2025 Feb 27:6-10.
13. Mandal S, Mandal S. Cryptocurrency and the Future of Financial Markets: A Mini Review. *The International Journal of Humanities, Social Sciences and Business Management*. 2025 Feb 27:21-7.

14. Mandal S, Mandal S. Mesalamine Microemulsions for Crohn's Disease: A Review. *International Journal of Health Sciences and Engineering*. 2025 Feb 17:1-8.
15. Bhumika K, Ali S, Jahan I, Kumar M, Mandal S, Mandal S. Enhanced Bioavailability and Targeted Delivery of Mesalamine for Crohn's Disease Using Microemulsion Formulations. *International Journal of Health Sciences and Engineering*. 2025 Feb 17:16-20.
16. Mandal S, Mandal S. Design and Evaluation of Liposomal Carriers for Targeted Delivery of siRNA In Cancer Therapy. *Current Pharmaceutical Letters And Reviews*. 2024 Oct 3:53-63.
17. Bhumika K, Mandal S. Exploring the Chemical Composition and Cardioprotective Properties of Plumeria obtusa Using Advanced LC-MS/MS and Computational Methods in a Rabbit Model of Adriamycin-Induced Myocardial Injury. *Current Pharmaceutical Letters And Reviews*. 2024 Oct 3:64-70.
18. Mandal S, Mandal S. Green Biomaterials from plants: Harnessing Nature for Sustainable Solutions. *Current Pharmaceutical Letters And Reviews*. 2024 Oct 3:11-24.
19. Shiva K, Mandal S. Development and Characterization of Bioinspired Cationic Lipid Nanocarriers for Enhanced Anti-Cancer Vaccine Delivery and Tumor Inhibition: In Vitro and In Vivo Evaluation. *Current Pharmaceutical Letters And Reviews*. 2024 Oct 3:71-7.
20. Mandal S, Mandal S. Strategic Design and Synthesis of Betulinic Acid Derivatives for Targeted Cancer Treatment. *Current Pharmaceutical Letters And Reviews*. 2024 Oct 3:88-94.
21. Jahan I, Mandal S. Development of Multi-Functional Nanocarriers for Combined Chemo and Photothermal Cancer Therapy. *Current Pharmaceutical Letters And Reviews*. 2024 Oct 3:78-87.
22. Mandal S, Singh AP. Development and In-Vitro Characterization of Gentamycin Sulphate Nanoemulgel for Ophthalmic Applications. *International Journal of Drug Delivery Technology*. 2024;14(4):2347-58. doi: 10.25258/ijddt.14.4.56
23. Suraj Mandal, Murraya koenigii: A Source of Bioactive Compounds for Inflammation and Pain Management, *Current Bioactive Compounds*; Volume 21, Issue , Year 2025, e15734072348822. DOI: 10.2174/011573407234882250324073439
24. Jiyaul Hak, Iram Jahan, Nasiruddin Ahmad Farooqui, Atul Pratap Singh, Himanchal Sharma, Smriti Gohri, Anshu Gujjar, Suraj Mandal, Nanochips in the Field of Oncology: Advancements and Potential for Enhanced Cancer Therapy, *Current Cancer Therapy Reviews*; Volume 21, Issue , Year 2025, e15733947343855. DOI: 10.2174/0115733947343855241230115820
25. Iram Jahan, Jiyaul Hak, Suraj Mandal, Shadab Ali, Sayad Ahad Ali, Nasiruddin Ahmad Farooqui, Isoquinoline Quaternary Alkaloid (IQA) Nano-dressings: A Comprehensive Review on Design Strategies, Therapeutic Applications, and Advancements in Transdermal Delivery for Chronic Wound Management, Recent Advances in Drug Delivery and Formulation; Volume 19, Issue , Year 2025, e26673878330005. DOI: 10.2174/0126673878330005250326060103
26. Mandal S, Vishvakarma P. Nanoemulgel: A Smarter Topical Lipidic Emulsion-based Nanocarrier. *Indian J of Pharmaceutical Education and Research*. 2023;57(3s):s481-s498.
27. Mritunjay Kumar Ojha, Nalluri Satish Kumar, Umesh Kumar Sharma, Prakash Gadipelli, Suraj Mandal, Farah Deeba, Monalisa Khuntia, Hariballav Mahapatra (2024) Exploring the Potential of Artificial Intelligence in Optimizing Clinical Trial Design for More Efficient Drug Development. *Library Progress International*, 44(3), 9498-9510.
28. Mandal S, Jaiswal DV, Shiva K. A review on marketed Carica papaya leaf extract (CPLE) supplements for the treatment of dengue fever with thrombocytopenia and its drawback. *International Journal of Pharmaceutical Research*. 2020 Jul;12(3).
29. Mandal S, Bhumika K, Kumar M, Hak J, Vishvakarma P, Sharma UK. A Novel Approach on Micro Sponges Drug Delivery System: Method of Preparations, Application, and its Future Prospective.

Delivery Systems for Ocular Disorders.

Curr Drug Res Rev. 2023 Dec 29. doi:

10.2174/012589977526663423121304470

4. Epub ahead of print. PMID: 38158868.

Indian J of Pharmaceutical Education and Research. 2024;58(1):45-63.

30. Mandal S, Vishvakarma P, Bhumika K. Developments in Emerging Topical Drug