

Review

AI-Powered Predictive Analytics in Modern Drug Discovery: A Comparative Review of Current Tools and the Unique Advances of SwaLife Predictive Analytics

Pravin Badhe¹, Mukesh Kumar Meena², Sonal Choudhary²

¹*Swalife Biotech Ltd, North Point House, North Point Business Park, New Mallow Road, Cork, Republic of Ireland*

²*Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001 India*

²*Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001 India*

Corresponding Author:

Dr Pravin Badhe

Email:

drpravinbadhe@swalifebiotech.com

DOI:

10.62896/cplr.2.4.01

Conflict of interest: NIL

Article History

Received: 12/10/2025

Accepted: 28/11/2025

Published: 10/12/2025

Abstract:

Artificial intelligence (AI) has revolutionized drug discovery by enabling predictive analytics for binding affinity, ADMET properties, and toxicity, accelerating hit-to-lead optimization. Common tools such as SwissADME, pkCSM, DeepChem, ADMETlab, QikProp, and MolSoft provide valuable predictions but suffer from significant gaps including lack of integrated multi-site binding simulation, limited confidence scoring, and poor accommodation of natural product chemistries. This review critically compares these tools and highlights the unique advances of SwaLife Predictive Analytics, an AI-powered platform that integrates multi-site binding affinity prediction, toxicity, and solubility assessments with explainable confidence metrics and natural product-friendly modeling. A case study on Rutin exemplifies SwaLife's interpretive power and actionable recommendations, positioning it as a transformative tool to reduce attrition and speed discovery.

Keywords: Predictive modeling, binding affinity prediction, ADMET tools, machine learning, drug discovery platforms, SwaLife Predictive Analytics, multi-site binding simulation.

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (<http://creativecommons.org/licenses/by/4.0>) and the Budapest Open Access Initiative (<http://www.budapestopenaccessinitiative.org/read>), which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.

1. Introduction

1.1 The Rising Role of AI in Drug Discovery

AI technologies encompassing machine learning (ML) and deep learning (DL) have become foundational in modern drug discovery, enabling rapid *in silico* prediction of molecular properties. By integrating advanced algorithms with cheminformatics, these approaches reduce experimental cost and accelerate hit-to-lead pipelines through predictions of binding affinities, pharmacokinetics, and toxicities.^{1,2,3}

1.2 Need for Reliable Early-Stage Prediction

High attrition rates in drug development, largely due to poor ADMET profiles and unexpected toxicities, underscore the urgent need for accurate and comprehensive early-stage predictive analytics. Early estimation of binding affinity, solubility, and toxicity facilitates informed candidate selection,

decreasing late-stage failures and developmental expenses.^{2,3}

1.3 Purpose of This Review

This review evaluates leading AI-based predictive tools by their architectures, capabilities, and limitations. It also provides a critical assessment of SwaLife Predictive Analytics, focusing on its distinctive multi-site binding affinity predictions and integrated ADMET-toxicity modeling within a unified interpretive AI framework.

2. Landscape of AI-Based Predictive Tools in Drug Discovery

2.1 SwissADME

SwissADME is a free, web-based tool extensively used for predicting drug-likeness, ADMET parameters, and solubility with a user-friendly interface. However, it does not support binding affinity predictions, multi-site modeling, nor

provide confidence scoring, restricting its scope for detailed mechanistic inference.³

2.2 pkCSM

pkCSM leverages graph-based signatures to predict pharmacokinetic and toxicity endpoints reliably. While valuable for toxicity trend analysis, it lacks binding affinity analysis and fails to model solubility under different environmental conditions. Its interpretability remains somewhat limited.⁴

2.3 DeepChem

DeepChem is an open-source Python library facilitating custom ML models for chemical property predictions, including neural networks for binding and ADMET properties. It requires programming expertise and does not provide ready-to-use GUI or integrated pipelines, limiting usability for rapid screening.

2.4 ADMETlab / ADMET Predictor®

These commercial platforms offer comprehensive ADMET predictions with good predictive accuracy and some uncertainty quantification. Despite batch processing capabilities, they lack multi-site binding affinity modeling and are costly, limiting accessibility for broader use.³

2.5 QikProp (Schrödinger)

QikProp provides physicochemical and ADMET property calculations with docking integration. Its limitations include absence of AI-driven multi-parameter optimization and no explainable confidence scoring to assess prediction reliability.⁵

2.6 MolSoft ICM / BIOVIA Pipelines

These platforms integrate docking-based predictive modeling and pharmacophore analysis, prized for accuracy in pose prediction and virtual screening. However, their complexity, higher costs, and slower analytical turnaround limit their suitability for fast early-stage prediction workflows.⁶

3. Comparative Analysis of Tools

A comparative evaluation reveals most existing tools specialize in either ADMET profiling or docking-based binding predictions but rarely integrate both with multi-site analysis. Binding affinity prediction is commonly limited to orthosteric sites or absent altogether. Toxicity predictions often lack integrated risk assessment and confidence intervals, limiting interpretability. AI utilization ranges from graph-based machine learning (pkCSM) to deep learning (SwALife). Usability varies, with SwissADME and pkCSM favoring accessibility, while commercial and

docking-integrated platforms pose financial and technical hurdles. Integration with broader discovery workflows often entails manual data handling.

4. SwALife Predictive Analytics in Drug Discovery

4.1 Overview

SwALife Predictive Analytics is an AI-driven platform integrating multi-parameter property prediction, uniting binding affinity, toxicity, solubility, and drug-likeness violation analysis in a single rapid evaluation engine that incorporates environmental parameters such as pH and temperature.

4.2 Multi-Site Binding Simulation

SwALife uniquely supports simultaneous binding affinity prediction at active sites, allosteric sites, and surface binding regions. This capability reveals distinct binding modes critical in identifying allosteric modulators, off-target interactions, and complex mechanism-of-action effects, setting it apart from competitors.

4.3 Integrated Predictive Modules

The platform combines modules for binding affinity, solubility, toxicity, and drug-likeness rule violation with confidence scoring, providing a holistic molecular risk assessment rarely offered by other tools.

4.4 AI Architecture & Explainability

SwALife employs deep learning models trained on large, diverse datasets including natural products. Explainable AI features supply confidence intervals, risk classification, and interpretive molecular feature contributions. An intelligent recommendation engine guides optimization strategies.

5. What Makes SwALife Predictive Analytics Better and Unique

5.1 Multi-Site Binding Prediction

Unlike other tools confined to single-site or no binding predictions, SwALife separately quantifies affinity and risk scores for active sites, allosteric sites, and surface-level interactions, enabling refined mechanistic insights.

5.2 Unified Binding + ADMET + Toxicity System

SwALife is unique in integrating binding affinity, ADMET parameters, and toxicity predictions within one platform; competitors typically focus on ADMET only or require docking as a separate step.

5.3 Confidence & Risk Scoring

SwALife provides transparent confidence levels, risk classifications, and variability analyses that other tools lack, allowing informed risk management.

5.4 Natural-Product-Friendly Modeling

Trained on chemically diverse datasets, SwALife effectively models high molecular weight, high polar surface area compounds like natural products that challenge traditional platforms.

5.5 Rapid Report Generation

Automatic, interpretable reports delivering summary insights and optimization recommendations streamline decision-making compared to manual interpretations required elsewhere.

5.6 Integration with SwALife Ecosystem

SwALife's seamless integration into a broader discovery pipeline including Target & Lead Optimizer and Discovery Studio provides unmatched end-to-end computational drug discovery support.

6. Scientific Case Study: Rutin

SwALife's application to Rutin demonstrated its multi-site binding prediction and interpretive power: active site binding affinity was 9.87 nM with 83.8% confidence, while allosteric and surface sites showed weaker affinities (85.08 nM and 76.56 nM). Solubility remained stable across binding contexts, but drug-likeness violations were notable due to high polar surface area and hydrogen bonding counts. SwALife produced actionable structural optimization recommendations, showcasing its utility in lead refinement.

7. Discussion

7.1 Gaps in Current Tools

Current tools lack multi-site binding simulation and integrated binding-ADMET-toxicity prediction. Explainability and confidence reporting are generally absent, hindering comprehensive early-stage decision-making.

7.2 How SwALife Addresses These Gaps

SwALife fills these gaps by combining multi-site analysis, unified multi-parameter prediction, interpretable AI with confidence scoring, and natural product chemical space awareness, facilitating risk-managed, accelerated compound selection.

8. Future Directions

Potential advancements for SwALife include integration with 3D docking and molecular dynamics simulations, use of graph neural networks (GNNs) for improved chemical feature extraction, organ-level toxicity modeling, polypharmacology prediction, and adaptive continuous learning from user data, broadening its computational discovery ecosystem.

9. Conclusion

SwALife Predictive Analytics sets a new standard in early-stage drug discovery by delivering AI-powered multi-site binding affinity, ADMET, and toxicity predictions in a unified, interpretable system with confidence scoring. Its natural-product-friendly modeling and automated insights accelerate and de-risk drug candidate selection, marking a significant advance over current predictive platforms.

References

1. Patel L, Shukla T, Huang X, Ussery DW, Wang S. Machine Learning Methods in Drug Discovery. *Molecules*. 2020 Nov 12;25(22):5277. doi: 10.3390/molecules25225277 PMID: 33198233; PMCID: PMC7696134.
2. Serrano DR, Luciano FC, Anaya BJ, Ongoren B, Kara A, Molina G, Ramirez BI, Sánchez-Guirales SA, Simon JA, Tomietto G, Rapti C, Ruiz HK, Rawat S, Kumar D, Lalatsa A. Artificial Intelligence (AI) Applications in Drug Discovery and Drug Delivery: Revolutionizing Personalized Medicine. *Pharmaceutics*. 2024 Oct 14;16(10):1328. doi: 10.3390/pharmaceutics16101328. PMID: 39458657; PMCID: PMC11510778.
3. Li Fu, Shaohua Shi, Jiacai Yi, Ningning Wang, Yuanhang He, Zhenxing Wu, Jinfu Peng, Youchao Deng, Wenxuan Wang, Chengkun Wu, Aiping Lyu, Xiangxiang Zeng, Wentao Zhao, Tingjun Hou, Dongsheng Cao, ADMETlab 3.0: an updated comprehensive online ADMET prediction platform enhanced with broader coverage, improved performance, API functionality and decision support, *Nucleic Acids Research*, Volume 52, Issue W1, 5 July 2024, Pages W422–

W431, <https://doi.org/10.1093/nar/gkae236>

4. Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). PKCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. *Journal of Medicinal Chemistry*, 58(9), 4066–4072. <https://doi.org/10.1021/acs.jmedchem.5b00104>

5. Ntie-Kang F. An in silico evaluation of the ADMET profile of the StreptomeDB database. *Springerplus*. 2013 Jul 30;2:353. doi: 10.1186/2193-1801-2-353. PMID: 23961417; PMCID: PMC3736076.

6. Neves MA, Totrov M, Abagyan R. Docking and scoring with ICM: the benchmarking results and strategies for improvement. *J Comput Aided Mol Des*. 2012 Jun;26(6):675-86. doi: 10.1007/s10822-012-9547-0. Epub 2012 May 9. PMID: 22569591; PMCID: PMC3398187.
