Review

Formulation of in-Situ Gel for the treatment of Glaucoma

Ritik Tyagi, Omjeet Kumar Singh, Tarun Parashar*

School of Pharmacy and Research, Dev Bhoomi Uttarakhand University, Dehradun, Uttarakhand-248007, India

Corresponding Author:	Abstract:		
Tarun Parashar	Glaucoma is a leading cause of irreversible blindness, primarily due t		
	elevated intraocular pressure (IOP). Traditional eye drops suffer from		
Email:	poor bioavailability and require frequent administration, affecting patient		
parashar89tarun@gmail.com	compliance. In situ gel formulations offer an innovative solution by		
	undergoing a sol-to-gel transition upon instillation, allowing for		
Conflict of interest: NIL	prolonged ocular residence time and sustained drug release. This review		
	explores various in situ gel formulations for glaucoma treatment,		
	highlighting key polymers such as Poloxamer 407, Carbopol, and		
	Sodium Alginate. Mechanisms of gelation, formulation strategies, and		
	recent advancements in drug delivery are discussed. In situ gels enhance		
	therapeutic efficacy, minimize systemic side effects, and improve patient		
	adherence, making them a promising alternative to conventional eye		
	drops. However, challenges such as formulation stability, mechanical		
Article History	strength, and regulatory considerations remain. To guarantee the efficacy		
Received: 03/05/2025	and safety of these formulations in the long-term therapy of glaucoma,		
Accepted: 09/06/2025	future studies should focus on improving polymer compositions and		
Published: 11/06/2025	performing comprehensive clinical trials.		
	Keywords: Glaucoma, In situ gel, intraocular pressure, Drug delivery,		
	Poloxamer 407, Carbopol, Sodium Alginate, and Eye drops.		

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.

INTRODUCTION

The progressive optic neuropathy known as glaucoma causes permanent vision loss due to the destruction of retinal ganglion cells and their axons. Elevated intraocular pressure (IOP) is a major risk factor for this condition, which is among the top causes of blindness globally.[1] Medications used topically are the most prevalent method for reducing intraocular pressure (IOP) in current treatment plans. Traditional eye drops have many advantages, but they also have their drawbacks, such as low bioavailability, fast ocular surface drainage, and frequent dosage requirements that might make patients reluctant to use them. One interesting new option for ocular medication distribution that has arisen in recent years is the creation of in situ gel formulations. These solutions are engineered to change from a liquid to a gel when injected into the eye. This enables the therapeutic agents to stay in touch with the cornea for an extended period of time and release themselves gradually. Patients are more likely to stick to their treatment plans when this novel method increases medication bioavailability and decreases delivery frequency.

There are a number of benefits to using in situ gels instead of more conventional dose forms for glaucoma treatment. These formulations may provide controlled drug release patterns that are customized to therapeutic demands by using biocompatible and biodegradable polymers that react to physiological circumstances. They are a great choice for the long-term treatment of glaucoma because they lessen eye discomfort and improve patient comfort.[2][3] This review aims to explore the current landscape of in situ gel formulations for glaucoma treatment, highlighting key components, formulation strategies, characterization techniques, and recent advancements in this field. By synthesizing existing research and developments, we aim to provide insights into the potential of in situ gels as a transformative approach in glaucoma therapy.

Mechanism and Advantages

When applied, in situ gels transform from a liquid into a gel, allowing them to remain in contact with the eye surface for extended durations. This approach significantly enhances the bioavailability and ocular residence time of therapeutic medications, allowing for far less frequent administration, in comparison to traditional eye drops. Some of the main benefits are:

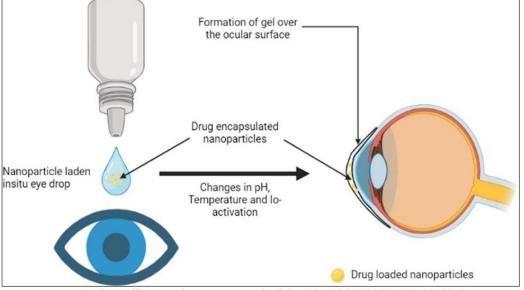
Sustained Drug Release: Active pharmaceutical

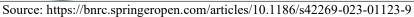
ingredients (APIs) like acetazolamide and bimatoprost, which are often used to treat glaucoma, may be controlledly released via in situ gels.

Enhanced Patient Compliance: By minimizing the number of applications needed throughout the day, these formulations improve adherence to treatment regimens.[4][5]

Reduced Ocular Irritation: Many in situ gels are designed to be non-irritating, enhancing patient comfort during use.[6][2][7]

OBJECTIVE OF THE STUDY


• This review is to critically assess the formulation strategies, polymer types, and therapeutic potential of in situ gel systems in the management of glaucoma, focusing on their ability to improve ocular drug delivery, reduce intraocular pressure, and enhance patient compliance.


RESEARCH METHODOLOGY

This review utilized a comprehensive, multi-stage systematic approach to examine the formulation and effectiveness of in situ gel systems for the treatment of glaucoma. To gather relevant literature, we performed an extensive search across multiple academic databases, including PubMed. ScienceDirect, Google Scholar, and Scopus. The primary focus of our search was on reviewed research articles, clinical trials, and reviews published in English, specifically addressing the use of in situ gel formulations for ocular drug delivery in glaucoma management. Studies that investigated the application of thermosensitive, ion-sensitive, and pH-sensitive polymers in in situ gel formulations, as well as their effects on intraocular

pressure (IOP) reduction, were prioritized. The review aimed to evaluate the role of various polymers, such as Poloxamer 407, gellan gum, sodium alginate, and carbomers, in the formulation of ocular in situ gels, their drug release kinetics, and their overall therapeutic efficacy.We excluded studies that did not specifically focus on glaucoma treatment or in situ gel systems, and we included studies that explored the role of different polymers in enhancing ocular drug bioavailability, extending drug residence time, and improving patient compliance. The data retrieved from selected studies were classified based on polymer types, formulation strategies, and the clinical outcomes reported, such as the reduction in

IOP and improvements in patient comfort. We assessed the methodological rigor of the selected studies by evaluating factors such as study design, sample sizes, formulation stability, and drug release profiles. The review also considered studies investigating the combination of natural and synthetic polymers in in situ gels, analyzing the potential synergistic effects of such combinations in improving therapeutic outcomes. A detailed synthesis of the benefits and challenges of using in situ gels for glaucoma treatment was conducted, focusing on aspects like gelation mechanisms, drug stability, viscosity, and patient adherence. The findings were critically analyzed to offer recommendations for future research and advancements in the formulation of in situ gels for the effective management of glaucoma.

systems, especially in ophthalmology. Polymers used in this technique may change from a sol-to-gel state in reaction to changes in temperature, pH, or ionic strength, among other physiological factors.

In situ gels can form through various mechanisms, which can be categorized as follows:

Mechanism	Description	
Temperature-	Polymers transition from liquid to gel at specific temperatures (e.g., above body	
triggered	temperature).	
pH-sensitive	Polymers undergo a phase change in response to changes in pH levels (e.g., from acidic	
	to alkaline).	
Ion-activated	Gelation occurs due to ionic interactions with specific ions (e.g., calcium ions) present	
	in the environment.	
Swelling- controlled	Gels absorb water and expand, forming a gel matrix that retains drugs.	
Diffusion- controlled	d Drug release is regulated by the diffusion of solvent into the polymer matrix.	
Chemically	Involves chemical reactions such as enzymatic degradation or precipitation from	
controlled	supersaturated solutions.	

Types of Polymers Used

Various polymers are employed in the formulation of in situ gels, each contributing unique properties to the gel system:

Polymer Type	Examples	Characteristics
Temperature- sensitive	Poloxamer 407,	Gel forms at physiological temperatures; easy to
	PNIPAAm	administer.
pH-sensitive	Carbopol, Gellan	Gelation occurs with pH changes; suitable for
	gum	ocular delivery.
Ion-sensitive	Gelatin	Forms gels through ionic cross-linking; enhances
		stability.
Natural	Alginates, Chitosan	Biocompatible and biodegradable; good
Polymers		for sustained release.
Synthetic	Polyvinyl alcohol	Offers mechanical strength and
Polymers	(PVA)	stability; customizable properties.[13]

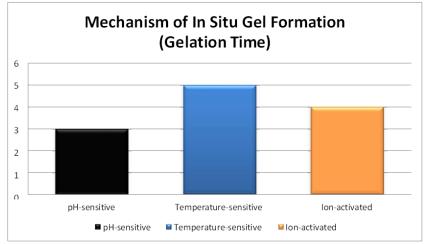


Figure 1: This bar chart illustrates the gelation times for different in situ gel formation mechanisms. pHsensitive gels have the fastest gelation, followed by ion-activated and temperature-sensitive gels. controlling the release rates.

Applications of In Situ Gels

In situ gels have a wide range of applications across various fields:

- Ocular Drug Delivery: In situ gels are a lifesaver when it comes to treating glaucoma and other eye illnesses. They increase drug absorption by keeping the medication in touch with the eye surface for longer.[14]
 - Oral Drug Delivery: These systems can be used to improve the bioavailability of oral medications by
- Injectable Formulations: In situ gels can be injected into the body where they form a gel at the site of injection, providing localized therapy.
 - Vaginal and Rectal Delivery: They offer sustained release profiles for local treatments while minimizing systemic absorption[15][16]

FORMULATION OF INSITU GELS FOR **GLAUCOMA TREATMENT**

The use of in situ gel formulations to treat glaucoma

is a relatively new development that offers substantial benefits over the use of eye drops alone. This new formulation uses polymers that change from a sol-to-gel state when exposed to physiological conditions, which increases the distribution of medicine to the surface of the eye. **Components of In Situ Gel Formulations Polymers:**

Temperature-sensitive Polymers: Such as Poloxamer 407 and Poloxamer 188, which form gels at body temperature. pH-sensitive Polymers: Like Carbopol and Sodium Alginate, which gel in response to changes in pH.

- Ion-sensitive Polymers: Such as Gellan gum, which gel upon interaction with specific ions (e.g., calcium ions).
- Active Pharmaceutical Ingredients (APIs):
- Commonly used drugs include Acetazolamide, Bimatoprost, and Timolol Maleate, all effective in lowering intraocular pressure (IOP).

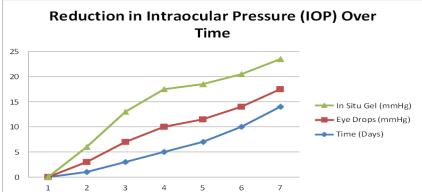


Figure 2: compares the reduction in intraocular pressure (IOP) over time between conventional eye drops and in situ gels.

Advantages of In Situ Gels

Prolonged Ocular Residence Time: The production of the gel permits prolonged contact with the ocular surface, which enhances the absorption and efficacy of the medicine.

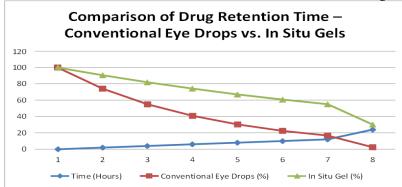
- **Reduced Dosing Frequency:** Because it doesn't need to be used as often as traditional eye drops, patients are more likely to stick to their treatment plans.
- **Minimized Systemic Absorption:** The systemic negative effects that may occur from taking drugs orally are less likely to occur because to the targeted distribution.

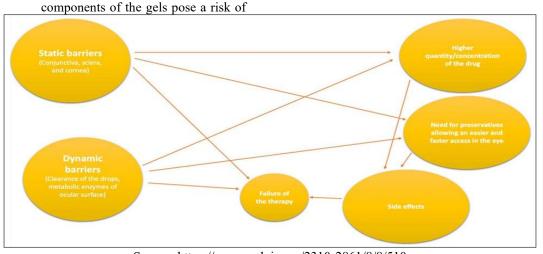
distribution. Formulation Strategies Preparation Methods:

The dosage form is usually prepared by first dissolving the polymer in water, then adding the medication, and then modifying the pH to get the best gelation qualities. A good example is the creation of pH-triggered gels using carbopol and hydroxypropyl methylcellulose (HPMC) for the delivery of acetazolamide, as shown in research.

Characterization:

The drug content, viscosity, pH, gelling capability, and release kinetics are the criteria used to assess formulations. One example is that sodium alginate may improve medication retention by forming gels when exposed to calcium ions in tear fluid, according to research.[17]




Figure 3: showing comparing drug retention over time between conventional eye drops and in situ gels.

conjunctivitis and blepharitis in some people.

- **Increased Tear Production:** Certain individuals may have conjunctivitis and blepharitis as a result of the gels' preservatives and formulation components.[22][23]
- Allergic Reactions: Symptoms like redness and swelling of the conjunctiva may occur if an allergic response occurs to certain polymers or medications used in the formulation.

Systemic Side Effects

- **Systemic Absorption:** The active medication may nevertheless be absorbed systemically in some formulations, even if in situ gels are intended for localized action; this is especially true if the drug has a high bioavailability. When beta-blockers are involved, this may lead to the usual adverse effects of oral drugs, such as low blood pressure, disorientation, and breathing difficulties.
 - **Drug Interactions**: Interactions with other drugs the patient is taking, especially those that influence cardiovascular function, might potentially worsen the systemic effects.[24][25]
 - **Potential for Long-term Effects:** Particularly with medications known to have substantial systemic adverse effects, long-term continuous use of certain formulations may cause cumulative systemic effects.[26]

Source: https://www.mdpi.com/2310-2861/8/8/510

CHALLENGES AND LIMITATIONS

Recent Research Developments

ocular

release

stability.[20][21]

Local Side Effects

.

efficient

drug

gel formulations for glaucoma treatment:

Recent studies have focused on optimizing in situ

The study's emphasis on the use of carbopol and

HPMC to create a pH-triggered in situ gel for

acetazolamide shed light on the possibility of its

investigation explored thermo sensitive gels containing Bimatoprost, demonstrating prolonged

and

acceptance.[18][19]Review also indicates that

combining natural and synthetic polymers can

enhance the therapeutic efficacy of these formulations by improving drug release profiles and

POTENTIAL SIDE EFFECTS OF USING IN

SITU GELS FOR GLAUCOMA TREATMENT

Though in situ gels show promise in treating

glaucoma, they are not without the risk of causing a

number of undesirable side effects. Formulation and

active component characteristics determine whether

Ocular Irritation: After using several

in situ gel formulations, you may feel

some pain, stinging, or burning.

Formulations that include specific

preservatives or polymers that might

irritate the surface of the eye should be

Blurred Vision: Visual acuity may be momentarily impaired due to the gel's

viscosity, which may occur shortly

and

Reactions:

The

formulation

they are systemic or localized side effects.

avoided.

after instillation.

Conjunctival

preservatives

administration.[4]Another

patient

good

When it comes to treating glaucoma, in situ gel compositions provide encouraging advances in ocular medication administration. To maximize their efficacy and patient compliance, however, a number

Stability Issues

Shelf Life: Because in situ gels are susceptible to deterioration over time,

of obstacles and restrictions must be overcome.

which might impact their effectiveness, they typically have a limited shelf life.[27]

Chemical Degradation: Reduced therapeutic efficacy may occur if the drug's sol form undergoes chemical degradation prior to transforming into the gel state.

Mechanical Properties

- **Lower Mechanical Strength:** It is possible for many in situ gels to have insufficient mechanical strength, which causes them to dissolve too quickly or flow away from their intended location. Because of this, the desired therapeutic impact may be compromised.
 - **Homogeneity of Drug Loading:** Hydrophobic medications in particular may be difficult to consistently load, which can cause dosage and efficacy variations.

Patient Compliance

Restrictions on Eating and Drinking: After administration, patients may be advised to avoid eating or drinking for several hours, which can be inconvenient and lead to non-compliance.

Blurred Vision: The gel consistency may cause temporary blurred vision immediately after instillation, potentially affecting daily activities and patient adherence.

Limited Drug Capacity

- Small Dose Requirements: In situ gels are typically suitable for drugs with small dose requirements, limiting their application for medications that require higher dosages.
 - **Partition Coefficient Limitations:** The choice of drugs is often restricted by their partition coefficients, which can affect their ability to penetrate ocular tissues effectively.

Complexity of Formulation

• Fabrication Challenges: Preparing in situ gels may be a challenging process that calls for exact control over a number of factors, including pH and temperature. Production costs and time might be increased due to this complexity.

Batch-to-BatchVariability:Repeatability in clinical settings might

Page No.: 48-55 be made more challenging by the possibility of batch-to-batch variability in natural polymers. The increased uniformity that synthetic polymers provide comes at the cost of potential new difficulties, such as biocompatibility concerns.[28]

Regulatory Hurdles

Approval Processes: New in situ gel formulations may take longer to reach the market since they must first pass rigorous regulatory tests for safety, effectiveness, and quality control.[29][30]

CONCLUSION

A groundbreaking development in glaucoma treatment, in situ gel technology provides an alternative to conventional eye drops by delivering medications directly to the eye, overcoming many of the drawbacks of these previous methods. In situ gels increase medication retention on the ocular surface, boost bioavailability, and decrease administration frequency by using polymers that engage in sol-to-gel transitions in reaction to physiological circumstances. This can lead to better patient compliance and overall therapeutic outcomes. Despite these advantages, several challenges remain. Issues related to stability, mechanical properties, and formulation complexity must be addressed to optimize in situ gels for clinical use. Additionally, patient compliance can be affected by factors such as temporary blurred vision and restrictions on eating or drinking after administration. Ongoing research is essential to overcome these limitations. Innovations in polymer selection, formulation strategies, and manufacturing processes will play a crucial role in enhancing the effectiveness and acceptability of in situ gels for glaucoma treatment. Furthermore, thorough clinical evaluations will be necessary to establish their longterm safety and efficacy.

While in situ gel technology holds great promise for improving glaucoma management, continued efforts are needed to refine these formulations and ensure they meet the needs of patients effectively. With further advancements, in situ gels could become a cornerstone in the future of ocular therapeutics, providing enhanced care for individuals suffering from this sight-threatening condition.

REFERENCES

[1] A. M. Khallaf, R. M. El-Moslemany, M. F. Ahmed, M. H. Morsi, and N. M. Khalafallah, "Exploring a Novel Fasudil-Phospholipid Complex Formulated as Liposomal Thermosensitive in situ Gel for Glaucoma," Int. J. Nanomedicine, 2022, doi: 10.2147/IJN.S342975.

[2] S. Katiyar et al., "In situ gelling

dorzolamide loaded chitosan nanoparticles for the treatment of glaucoma," Carbohydr. Polym., 2014, doi: 10.1016/j.carbpol.2013.10.079.

[3] R. K. Barse, A. A. Tagalpallewar, C. R. Kokare, J. P. Sharma, and P. K. Sharma, "Formulation and ex vivo-in vivo evaluation of pH-triggered brimonidine tartrate in situ gel for the glaucoma treatment using application of 32 factorial design," Drug Dev. Ind. Pharm., 2018, doi: 10.1080/03639045.2017.1414229.

[4] F. Ali, S. Habibullah, Y. Giri, A. Behera, and B. Mohanty, "Formulation and evaluation of acetazolamide loaded in– situ gel for the treatment of glaucoma," J. Res. Pharm., 2023, doi: 10.29228/jrp.291.

[5] P. Shah et al., "Exploring of Taguchi Design in the Optimization of Brinzolamide and Timolol Maleate Ophthalmic in-situ Gel Used in Treatment of Glaucoma," Curr. Drug ther., 2019, doi: 10.2174/1574885514666190916151506.

[6] K. Arora, L. Singh, and C. Author, "Formulation Development And Characterization Of In Situ Gel Containing Bimatoprost For The Treatment Of Glaucoma," J. Pharm. Negat. Results , 2024.

[7] S. Paul, S. Majumdar, and M. Chakraborty, "Revolutionizing ocular drug delivery: recent advancements in in situ gel technology," Bull. Natl. Res. Cent., 2023, doi: 10.1186/s42269-

023-01123-9.

[8] R. Deshmukh, R. Singh, and S. Mishra, "Pharmaceutical In Situ Gel for Glaucoma: Recent Trends and Development with an Update on Research and Patents," Crit. Rev. Ther. Drug Carrier Syst., 2024, doi: 10.1615/6.irD.arTh. Dev. 6. is Sect. 41.12.10

10.1615/CritRevTherDrugCarrierSyst.v41.i3.10.
[9] S. Gupta, , Archana, and A. K. Niranjan, "A Comprehensive Review on In-Situ Gel Drug Delivery System," J. Drug Deliv. Ther., 2022, doi: 10.22270/jddt.v12i4-s.5539.

[10] V. Y. Londhe and S. Sharma, "Formulation, characterization, optimization and invivo evaluation of methazolamide liposomal in-situ gel for treating glaucoma," J. Drug Deliv. Sci. Technol., vol. 67, p. 102951, Jan. 2022, doi: 10.1016/j.jddst.2021.102951.

[11] K. R. Vijaya Rani et al., "The Effect of Polymers on Drug Release Kinetics in Nanoemulsion In Situ Gel Formulation," Polymers (Basel)., 2022, doi: 10.3390/polym14030427.

[12] B. Vigani, S. Rossi, G. Sandri, M. C. Bonferoni, C. M. Caramella, and F. Ferrari, "Recent advances in the development of in situ gelling drug delivery systems for non-parenteral administration routes," Pharmaceutics. 2020. doi: 10.3390/pharmaceutics12090859.

[13] M. Kouchak, "In Situ Gelling Systems for Drug Delivery," Jundishapur J. Nat. Pharm. Prod., vol. 9, no. 3, Jun. 2014, doi: 10.17795/jjnpp-20126. [14] O. M. Kolawole and M. T. Cook, "In situ gelling drug delivery systems for topical drug delivery," European Journal of Pharmaceutics and Biopharmaceutics. 2023. doi: 10.1016/j.ejpb.2023.01.007.

[15] K. P. Dhanya, C. Siji, E. Jamshiya, P. Nihal, and O. Deepthi, "In Situ Gel Drug Delivery System: A Review," J. Pharm. Res. Int., 2022, doi: 10.9734/jpri/2022/v34i29b36056.

[16] P. Kaur, T. Garg, G. Rath, and A. K. Goyal, "In situ nasal gel drug delivery: A novel approach for brain targeting through the mucosal membrane," Artif. Cells, Nanomedicine, Biotechnol., pp. 1–10, Mar. 2015, doi: 10.3109/21691401.2015.1012260.

[17] S. Mandal, G. Prabhushankar, M. Thimmasetty, and M. Geetha, "Formulation and evaluation of an in situ gel-forming ophthalmic formulation of moxifloxacin hydrochloride," Int. J. Pharm. Investig., 2012, doi: 10.4103/2230-973x.100042.

[18] R. Alsheikh et al., "Formulation of Thermo-Sensitive In Situ Gels Loaded with Dual Spectrum Antibiotics of Azithromycin and Ofloxacin," Polymers (Basel)., vol. 16, no. 21,

p. 2954, Oct. 2024, doi: 10.3390/polym16212954.

[19] S. D. Sathyanarayana, N. C. Rompicherla, A. N. Vadakkepushpakath, and P. Nayak, "Development of thermosensitive ophthalmic in situ gels of bimatoprost for glaucoma therapy," Indian J. Pharm. Educ. Res., 2020, doi: 10.5530/ijper.54.2s.71.

[20] A. N. V Sandeep DS, Narayana Charyulu R, "Smart In situ Gels for Glaucoma- An Overview," Int. J. Pharm. Sci. Rev. Res., vol. 50, no. 1, 2018, [Online]. Available: https://globalresearchonline.net/journalcontents/v5 0-1/15.pdf

[21] Y. Wu et al., "Research progress of in-situ gelling ophthalmic drug delivery system," Asian

J. Pharm. Sci., vol. 14, no. 1, pp. 1–15, Jan. 2019, doi: 10.1016/j.ajps.2018.04.008.

[22] M. Pandey et al., "Potential of stimuliresponsive in situ gel system for sustained ocular drug delivery: Recent progress and contemporary research," Polymers. 2021. doi: 10.3390/polym13081340.

[23] P. Kataria, R. Katara, P. K. Sahoo, and S. Sachdeva, "Dorzolamide in situ Gel Forming System: Characterization and Evaluation for Glaucoma Treatment," Madridge J. Pharm. Res., vol. 1, no. 1, pp. 13–21, Jun. 2017, doi: 10.18689/mjpr-1000103.

[24] A. Arbabi, X. Bao, W. S. Shalaby, and R. Razeghinejad, "Systemic side effects of glaucoma medications," Clinical and Experimental Optometry. 2022. doi: 10.1080/08164622.2021.1964331.

[25] P. R. Lewis, T. G. Phillips, and J. W.

Sassani, "Topical therapies for glaucoma: What family physicians need to know," American Family Physician. 1999.

[26] R. Cassano, M. L. Di Gioia, and S. Trombino, "Gel-Based Materials for Ophthalmic Drug Delivery," Gels, vol. 7, no. 3, p. 130, Aug. 2021, doi: 10.3390/gels7030130.

[27] T. C. Ezike et al., "Advances in drug delivery systems, challenges and future directions," Heliyon, vol. 9, no. 6, p. e17488, Jun. 2023, doi: 10.1016/j.heliyon.2023.e17488.

[28] K. Sarada, S. Firoz, and K. Padmini, "In-

situ gelling system: A review," International Journal of Current Pharmaceutical Review and Research. 2015. doi: 10.22270/jddt.v4i4.918.

[29] M. Madan, A. Bajaj, S. Lewis, N. Udupa, and J. A. Baig, "In situ forming polymeric drug delivery systems," Indian Journal of Pharmaceutical Sciences. 2009. doi: 10.4103/0250- 474X.56015.

[30] T. C. Ezike et al., "Advances in drug delivery systems, challenges and future directions,"Heliyon. 2023. doi: 10.1016/j.heliyon.2023.e17488.
